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Closed-Form Solution of ECA Target-Tracking
Filter using Position and Velocity Measurements

Yong-Ki Yoon and Sun-Mog Hong

Abstract

Presented are closed-form expressions of the three-state exponentially correlated acceleration(ECA) target-tracking filter. The steady-state
solution is derived based on Vaughan’s approach for the case that the measurements of target position and velocity are available at

discrete points in time. The solution for the ECA tracking filter using only position measurements and the solution for the constant

acceleration(CA) tracking filter are obtained as a special case of the presented results.

1. Introduction

A realistic model for a maneuvering target has been proposed
by Singer [1]. The Singer model assumes that the continuous
time target motion may be represented with exponentially corre-
lated acceleration(ECA). The discrete-time state equation of the
target motion is simple, and it leads to a three-state Kalman
filter solution for estimation and prediction of the target states.

The steady-state solution for the ECA filter has been exten-
sively studied [2-5, 7], which provides a priori tracking perfor-
mances and useful information for preliminary design. Fitzgerald
presented the solution very efficiently with a careful parametriza-
tion for the case of using only position measurements in {2], and
for the case of using position and velocity measurements in [3].
The steady-state solutions were generated by allowing the filters
to run until the steady-state was reached. A closed-form solution
for the ECA filter was obtained by Gupta [4] for the case that
only position measurements were available. The result is a
generalization of the previous work of Gupta and Ahn [5], which
is based on Vaughan’s approach [6]. More recently, Beuzit [7]
presented an alternative approach to obtain the closed-form
solution based on the comparison between the Wiener and Kalman
filtering. However, Beuzit’s approach is applicable to the case of
using position measurements only.

On the other hand, Ramachandra [8] gave a closed-form solu-
tion for a constant-accelaration(CA) tracking filter with position
measurements only. The tracking filter is derived under the
assumption that the changes in the target acceleration, between
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two consecutive measurements, are a white noise process. The
work is extended in [9] to the case that the position and velocity
measurements are available.

In this paper we present closed-form expressions of the
steady-state solution for the ECA tracking filter using the
measurements of position and velocity. The steady-state solution
is derived based on the Vaughan’s results. The results of Gupta
[4] and Ramachandra [8, 9] are obtained as special cases of the

presented expressions.
II. Equations of ECA Tracking Filter

The discrete-time model of ECA target motion is described by
the following equation:

2+ D) =0 (Dx(k)+ov(k) 1

where the dynamic state transtion matrix @ (7) is given by

1 8 fa
o(D=10 1 o1—x 2
00 x
with 0=—Z, x=exp(—6) and a,=6—1+x. Obviously,
1 -6 - 7a
e MD={0 1 o1~y &)
0 0 y

where y=exp(8), a;=6+1—y. In eq. (1) o(k) represents a
stationary zero-mean white sequence with nonnegative definite

covariance matrix Q given by
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where ¢= 2:%". The exact expression for Q is given in [1].

The position and velocity measurement, available every T

second, are defined by

y( k)= Hx(k) +w(k) .3
where
_f100
H_[O 1 O]

and w(k) is a stationary zero-mean white sequence with positive
definite covariance matrix R given by disg{ &, o). It is

assumed that (%) is uncorrelated with o(#).

IMl. Steady-state Solution for ECA Tracking
Filter

For the ECA tracking filter, (o, H) and (o, Q%) are
detectable -and stabilizable, respectively. Thus, the steady-state
prediction covariance matrix, denoted by P, exists and it is
obtained by solving the discrete-time matrix Riccati equation

P=o[P—-PHY(HPH"+R) ‘HP]o T+Q. 6)

Moreover, the steady-state Kalman gain K and the estimation
covariance matrix, denoted by . P, are obtained, respectively, by

computing

K=PH(HPH"+R)™' ' @)
and

P=(1—-KH)P1—KH)T+KRK". @)

The Vaughan’s approach [6] to obtain the covariance matrix P
is briefly outlined as follows.

1) Construct the Hamiltonian matrix of the Riccati equation
eq. (6) such that

o7 o "TH'R'H

H’Z[ Qo T 0+Qo TH'R'H |

2) Find the eigenvalues of H, A(H), satisfying A(H)>1,

=1, 2, 3.
3) Find the eigenvector matrix W such that

WD=HW

with

A0
7|

], A=diag{ A}, A5, 43} .

04!

4) The steady-state covariance matrix P is then given by
P=Wy W

where W), W, are partitioned matrices of W such that

My W
W= .
Wo Wy

Now, we describe the derivation of the covariance matrix P
in detail. First, the Hamiltonian matrix is given by

1 o 0 #1 0 0
— 1 0 };:‘9 % 0
H= —fa, 1~y v —-jleﬂ —’i——ﬁlo,;— 0 ©)
U Sy ygpg 1+ _%1 8+ %l a,
Uy Sy yang %:— 1+ % o1—x)
L Us Sy Yasq ‘%';3‘ ;Z;g— x

where

Uy=aqlan— t0g2— T ay)
U= qlap— t0a5— ©ayqx)
Us = qlay— t0a5~ Casqx]
Si=algp+ f1-yayl
S;=qlap+ 1-3) gyl
Sy=qlan+ f(1-y)ayul.

The characteristic equation of the Hamiltonian is obtained by

the determinent

[H, — All=0 ao
and the eigenvectors are obtained by solving for x in

(H; — ADx=0. , an

By direct evaluation of eq. (10) we can determine the charac-

teristic polynomial as
A = 2+ ad® + b4 + A+ bA% + ad +1=0 12)

where
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and

A, =2(1+cosh &) U, — 18U, — PP, Us + 16S, + Caryay
Ay=2(1+cosh8)S; — (1 —x)S;— (1 —3) vgs,
Ay=U,S,~U,S,

B)= —=2(1+2cosh®)U,+16(1 +2 cosh O U,
+20(2+3) a;— 61 —0)]U; — 16(1 +2 cosh 6)S,
+7260°S, + 00, S5+ L 6(1 — ) — (2 +x)ay]vars
+ r30a2ng3 + r4a1a2yq33

B,= —2(1+2cosh S, +(1—x) (2+)S;

+ o2 +x)(1 = 9)yao — (1 =21 —y)yqz

By= —2cosh8(U,S; — U,S) + (1 —x)(U; S;— U3S))
+ %@ (UsS; — UpS3) —  1a,Sy + (1 ~3) Uplyays
+1{ 72,8+ (1 -3 Uylygy.

Let us define X;=A+4;!, i=1, 2, 3, so that

X+ X534

/1,‘= 2

14> 1.

Factorizing the equation (12) such that
(A=AD@A=A7YA= AR =N A= A0 A =27H) =0 a3

where A, A, and £, are the eigenvalues outside the umit circle,

and comparing egs. (12) and (13) we get, after simplification,

Xl +X2 '+‘X3: a
X1X2+X2X3+X3X]=/9 (14)
X1X2X3= 7

where
a=—a
B=b—3
y=—c+2a

From eq. (14) we can obtain

X 2=t a=X) =y (a=X)7—4X; 7 | (15)

and a cubic equation for X,

X —aXi+8X;—y=0. (16)

The solutions of eq. (16) are obtained using the procedure
detailed in [5]. Since the ECA model is of order 3, H, is of
order 6. If A is an eigenvalue of H,, then A~' is also an eigen-
value of H,, and hence the eigenvalue problem is of third-order
only. The eigenvector W, corresponding to the eigenvalues 4,

are obtained by direct calculation "as

1
Wai
= | Wy 1
w Wy; : a7
Ws;
We;i
where
N
Wy; = D

N
wy=—1 - Al ra,— (1 - )76+ 5]

w51=(z‘0/1,- ( — A ) 1)02

S
We; = xiji[—UB/‘,'_SgD —W3¥d33 — O_g w5i]

and
Di= & [4(1 =) (1 =2 — gz]
2
+(y=H1-% 8, — 2a;5,]]
== 2= 1=+ )
2

—Za(l- A+oz)]

Ne= b (= =00- LU+ (=101 - A+02)021

+r2a1U2(y—/l,-)/l,-]

—7‘% P9 (1 —0)gy—ra19 W a,—6(1—)]

—8(y—A AL o(1— x)(r¢9+62) rzal(l /1+02

Then, the steady-state P matrix is given by
P= Wy W , (18)

where W, and W, are determined by the eigenvectors as




26 YOON and HONG : CLOSED-FORM SOLUTION OF ECA TARGET-TRACKING FILTER USING POSITION AND VELOCITY MEASUREMENTS

1 1 1
Wy = |wy wp wy
W3 W Wy

(19)

Wy Wy Wy
Wsy Wsz Wsy
We Wez We3

W =

The elements of the W, and W, are obtained by putting

i=1, 2, 3 in eq. (17). Inverting w,, we obtain the expression

. apy ap ap
W, = |aa an axn (20)
az Az Az
where
A3 Ny A
a11=%[ Play—(1— y)ﬁ)(—l)—y—;;—ﬁzy_zaz)
A,
TR )1
A
(112=%[ 2(a,— y—3/13)
o __Ai*_& Az
=9 (5, 525 "Dy -7 )
gL DyN3 —NoDy
BT D D,Dy
N AN A
aZ,—D[ Tz(ﬂz (1- y)a)(D y—A D, y*ﬂa)
_ NN, A '
Bip NG -5
A
an=%[ fz(ﬂz— y_l,ll)
_ Ny A N A
=Dy 528 =Dy 34 )
_ 1 DN, —N;Dy
=D DD,
A Ny, A
ay =41 Aa—-(1- y)oxw—?,lz—iy_}l)
N]Ng /11 [N
y—ﬂx)]
— L0 2la—(1—po 2 _
ayp= D[ (612 (1 J’)H)(y 1 y_A2)
N A Ny A
(1 y)(D] =4 D, y—/iz)]
a _1 D\N,—N\D,
2=p " DD,
and
- ]\i (Az—Aa)
D= 72[02 (1-»all D, (y*ﬂz)(_Y‘/‘s)
+N2 (/i'; +N3 (/Il ]
Dy (y— /13)(y /1) Dy (y~— A)(v ﬁz)
B N1N9 (Ag—AD NNy (A3 —49)
=B D, o)A T DDy (r—ay)(y—Ap)

i N1N3 (A, —43) 1
DDy (y=A(y—43)

N

The steady-state covariance P= Wy, W' then yields

Py= o%lil(z,»—naﬂ

Py= ozxél(/l,-—l)a,g

Py= Ufigsx(/li—l)ﬂg ' @1)
= 022;3:1[ reA,—(l—A,-)%j]a,z

3. N;
Py= o%lgl[ n‘)/i,'—(l—/h)ﬁl_]ﬂa

B g:lx—l 311_53%_‘703;)’033—% ws; lag.

In the above, we derived equation eq. (21) for the steady-state
prediction covariance matrix. The steady-state Kalman gain K
and the estimation covariance matrix P are determined as
indicated in egs. (7) and (8). Also, the steady-state smoothing
covariance matrix [10, 11], denoted by P,, can be obtained by

solving a set of linear equations

P-ApAT : 22

P—APAT=
where
A= Po TP

The procedures to compute K, P, and P, are straighforward,

and it is not detailed here.
By letting o,— o0 in eq. (12), we can show that our expres-

" sions reduce to the results for the case of position measurements

only in [4]. The coefficients in eq. (12) are reduced to the
coefficient for the CA filter in [9] by substituting ¢ = o5 7 and

by letting 4= w——»0 Also, the coefficients in eq. (12) are

reduced to the coefficient for the CA filter in [8] by substituting
¢= o T and by letting 4 -0 and o,— . Furthermore, the
numerical computations of the special cases of the presented
expressions are in agreement with the results of Ramanchandra
[8, 9]. This implies that the results of Gupta 4] and
Ramanchandra [8, 9] are special cases of the presented expres-
sions.

We computed P using the derived expressions. Figs. 1, 2, and 3

present the results for the parametrization of ('— :[0 56 +3.4

(%?)'““1; for solid line and (-%)=10(0.56+3.4(- %~ ) o

for dot line, where ¢, denotes the standard dev1anon of the
exponentially correlated target acceleration. In the figures, p>
denotes 5,7%/a,. The figures are in agreement with the results
presented by Fitzgerald [3], which have been computed by

allowing the filters to run until the steady-state was reached.
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Fig. 1. Normalized rms position prediction errors.
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Fig. 2. Normalized rms velocity prediction errors.
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Fig. 3. Normalized rms acceleration prediction errors.

IV. Conclusion

In this paper we presented closed-form expressions of the
steady-state solution for the ECA tracking filter using the mea-
surements of position and velocity. The results of Gupta [4] and

Ramanchandra [8, 9] are special cases of the presented expressions.
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