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Delay Time Optimal Coordination Planning for
Two Robot Systems

Ji-Hong Lee, Heon-Seong Nam, and Joon Lyou

Abstract

A practically applicable collision free trajectory planning technique for two robot systems is proposed. The robot trajectories considered
in this work are composed of many segments, and at the intersection points between segments robots stop to assemble, weld, or do other
jobs by the attached end-effectors. The proposed method is based on the Planning- Coordination Decompostion where planning is to find
a trajectory of each robot independently according to their tasks and coordination is to find a velocity modification profile to avoid collision
with each other. To fully utilize the independently planned trajectories and to ensure no geometrical path deviation after coordination, we
develop a simple technique added the minimal delay time to avoid collision just before moving along path segments. We determine the
least delay time by the graphical method in the Coordination Space where collisions and coordinations are easily visualized. We classify
all possible cases into 3 groups and derive the optimal solution for each group.

[.  Imtroduction

Multiple robots in a coordinated manner can increase the pro-
ductivify and improve the versatility in complex tasks. However,
when more than one robot are moving in a common work space,
they become obstacles to each other. In multiple robot cases, a
collision free motion planning for single robot can not be directly
expanded, where stationary obstacles or moving obstacles with
predefined velocity are under consideration.

One practical approach to the collision free motion planning for
multiple robots’is to decompose the problem into two subproblems:
path planning and velocity planning[5]. Along this line, time
optimal - solutions for single robot had been studied in Bobrow et
al.[7] and Shin and McKay[8], and for multiple robot in Bien and
Lee[1], Lee[2], and Shin and Zheng[4] including additional consi-
derations for collision avoidance between robots. A special tech-
nique of modifying the velocity for collision avoidance is to insert
delay times at appropriate spatio-temporal positions. Because of
the simplicity this method has been studied in many works(1, 3,
4, 6]. Among these methods, many works inserted a delay time
before robots start to move along the next path segment. By
doing so, the original velocity profile is only shifted along the
time axis without deformation.

In practical application, trajectories are composed of .many
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segments both geometrically and temporally. Actual contacts bet-
ween end-effectors and objects occurs between these segments(see
fig. 1).

The most widely used technique for collision avoidance for
such cases is the semaphore method where one robot waits before
running the next path segment till the other robot move out
completely from the dangerous region. The main advantage of
this technique lies in its simplicity and the fact that each resultant

Robotl Robot2

Fig. 1. Example configuration and paths for a dual-robot system.
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velocity keeps certain original shape if described with respect to

run-length along the paths. The main concern of this work is to -

minimize the sum of delay times inserted collision avoidance. We
call the proposed method planning-coordination decomposition
technique: in the planning stage individual trajectories(paths and
velocities) are planned according to given tasks, and in the
coordination sfage velocities along the paths are modified to avoid
possible collisions between the two moving robots. In this work,
we assume that the overall paths are composed of several path
segments(actually curves) and robots move to a task point, stop to
execute some jobs by end-effectors and continue with this pattern.
Even though zero job-execution times are assumed in the illus-
trative examples, the proposed method can be directly applied to
general cases by simply overlapping the job-execution times to
the calculated delay times.

For collision avoidance, we extend the result of Bien and Lee[1]
by gathering all the coordination space constructed by given path
segment pairs of two robots. The coordination space technique is
summarized as follows. At first, paths and velocities(say, trajec-
tories) of two robots are planned independently by taking only
static obstacles into consideration. Next, a collected coordiﬁation
space is constructed by collecting all the possible combinations of
path segments (it was called coordination space cell here while
called coordination space by Bien and Lee). And then, a collision
fnap which shows collision regions in the collected coordination
space is defined. After a coordination curve from independently
planned trajectories is configured on the collected coordination

space, we check whether the coordination curve passes through

collision regions and insert minimal delay time between path-

segments for collision avoidance. By inserting a delay time, the
corresponding robot waits for the delay time before moving its
next path segment.

To calculate optimal delay time, all the possible coordination
curves are classified into 3 groups according to the traveling
times of two robots. And then we derive a optimal delay time
coordination curve for the comresponding group. The proposed
method is intended to add delay time mainly to faster one so that
the overlapped total traveling times of the two robots may be
minimized.

In section 2, we describe the concept and various properties of
the collected coordination space, the collision region and the
coordination curve for segmented paths. The relation delay times
and collision avoidance is handled in section 3. With this concept,
the method of classifying all the coordination curves into 3 groups
and inserting minimal delay time at appropriate spatio temporal
positions are introduced in section 4 which is accompanied with
illustrative examples for each case.

IL. Coordinatﬁon‘ Space for Segmented Paths

When a trajectory pair for two robots is given, geometrical

descriptions of the paths as well as the velocities along the paths
are specified. In the following subsections, brief descriptions for
the concepts and properties of (collected) coordination space,
collision regions, original coordination curve determined from inde-
pendently planned trajectories and a coordination curve modified
by inserting delay time between path segments are given. '

1. Collected Coordination Space and Collision Map

The paths considered in this paper are composed of several
segments, and the robots start to move along each segment with
zero velocity and reach the end point with zero velocity. Actual
operations which do not require any motions of robot bodies are
executed by attached end-effectors between the segménts. Let the
distance from the initial position to the present position along the
path of robot r be denoted by s”. Then the i-th path segment of
robot 1 is the interval described as

ST < s’ < Sy, =1, 2, i=0, ..., N'—1. i)
where N7 denotes the number of path segments of robot r. Here,
for completeness, we review the definition of the coordination
space. '

Definition 1. : Coordination Space is the collection of the
ordered pairs (s', s%) with (0<s'<S'; and 0<s’<S%.

‘Note that we call the coordination space on which collision
regions are defined the collision map.

Definition 2. : A subspace in a coordination.space ordered
pairs (s', s? satisfying S!<s'<S%,, and SZ<s?<S%,, is called
(@i, j)th Coordination Space Cell.

Note that there are 4X5=20 coordination space cells if one
robot has 4-segmented path and the other robot has 5-segmented
path. For the paths and configurations of Fig. 2(the details of data
will be given later), the coordination space is constructed by
collecting each coordination space cell which is specified by
horizontal and vertical boundaries in the Fig. 2. Assuming
nonredundant manipulators and nonsingular configurations, we can
determine collision regions by the technique of Bien and Lee. The
arm lengths of two identical robots are 0.4m and 0.3m, and the
distance between two bases of the robots is 0.8m.

2. Coordination Curve

Assuming that the velocity of each robot along the path is
given, which is the case under the consideration in this paper, we
can construct a curve in the coordination space connecting initial
point (lower left comner in the coordination space) to end point
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Fig. 2. (a) Example configurations and paths for a simple dual
robot system. (b) The Collision Region in the collected
coordination space corresponding to (a).

(upper right comner) by matching the run-length of the robots
through time. Also, we assume that the robots stop at the points
between path segments for some jobs, and that no motion of
tobot body is needed for those jobs. Also we assume the stopping
time is zero, for conveniency. Then, for the example of Fig. 2
and the trapezoidal velocity profile (acceleration during 1/4 of
total traveling time, 1/2 for constant speed of 1000 mmysec, and
1/4 for deceleration), the corresponding coordination curve is
given as Fig. 3. Total traveling times are 4.0067 sec and 3.1961
sec, respectively. For independent trajectory planning prior to the
coordination, one may adopt path-velocity decomposition[5] tech-
nique or any other methods in which the paths and the velocities
are obtained simultaneously. For any cases, the resultant trajectory
is specified by the path and velocity along the path which are
sufficient informations needed to apply the method proposed in
this paper. In this work, however, we will adopt trapezoidal
profiles for the simplicity of presentation.
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Fig. 3. Resultant Coordination Curve for the paths of Fig. 2 and
trapezoidal velocity profiles.

3. Virtual Collision Region

In the works of Bien and Lee[l] and Lee[2], we assume that
robots do not move backward (toward initial point) along the
paths. This assumption means

L 20, r=1, 2. ' @
and
2 .
as* —dr
F = —é 2 0. ()]
dt

With this assumption, a collision region can be transformed to a
simpler quasi-equivalent collision rtegion. For a given collision
region, there may exist some areas around the collision region
where any coordination curve satisfying the condition (3) can not
pass through. When such regions are added up to the given
collision region, the resultant region is called Virtual Collision
Region(VCR). In Fig. 4, a collision region and corresponding
virtual collision region are depicted.

4. Backward Motion

Any velocity profile including backward motion along the given
path takes longer traveling time than the quasi-equivalent velocity
profile of no backward motion. The quasi-equivalent velocity
profile is a velocity profile that has same profile with the given
one except in the intervals where more than one velocity values
exist. In the overlapped intervals, we take the highest velocity
curve to get a quasi-equivalent velocity profile. A velocity profile
including backward motion interval and its quasi-equivalent
velocity profile are shown in Fig. 5. As far as collision avoidance
is concemned, we can replace the velocity profile including
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Fig. 4. A collision region and its virtual collision region.
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Fig. 5. A velocity profile including backward motion and its
quasi-equivalent velocity profile.

. backward motion with the quasi-equivalent -velocity profile héving
only forward motion,
And related with the traveling times, we describe one more
interesting property of a given velocity and its quasi-equivalent
velocity profile in the followings. Let 7, be the total traveling

time of any given trajectory, S be the total traveling length along.
the path, and (4, 8 c(0, S) be the interval of backward motion.

Then,

7= f‘T'd:: Sgsids= falsds
c )
flds flds+ ds+fi+fc-ifds @

1
ds+f : +cids

. < S .
As T,= fo -};a’s + ft %, T is the total traveling time except

the backward motion. Note that T, > T

DELAY TIME OPTIMAL COORDINATION PLANNING FOR TWO ROBOT SYSTEMS

3. Slope at the Boundary

Another important property of coordination curve considered in
this work is described here. Since robots stop between segments
for a job, the slope of a coordination curve at the boundary of a
coordination space cell are given as follows.

TS if s‘=s§ and s'+S?
%: 0 if s'+S! and st=8? ®)
% otherwise

As a result, coordination curves intersect the horizontal boundaries -
and vertical boundaries of coordination space -cells tangentially.
An example of such property will be shown in the next section.

[MI. Collision Avoidame :

From now on, we describe how to avoid collision by inserting
delay time between path segments. In Fig. 6 are shown example
velocity profiles and the resultant coordination curve for two
robots. . '

Next, let’s insert some delay time between the first path
segment and the second path segment of robot 1 and between the
second path segment and the third path segment of robot 2 as
shown in Fig. 7-(a), (b). Then, we get the. corresponding coordi-
nation curve as Fig. 7-(c). As shown in the figure the resultant
coordination curve. has been transformed into the shape different
with previous one. So, by determining where and how many to
insert delay times can the original coordination curve be modified
SO as not to pass given collision regions, and therefore the robots
do not collide with each cther.

Note that, even if some delay times are inserted between path
segments, the velocity profiles described along traveled distance -
are never changed. So, the velocity profiles described along
traveled distance corresponding to Fig. 7 are exactly the same
with the profiles in Fig. 6-(c), (d).

Let the original coordination curves and the corresponding
traveling times of independently planned trajectory for each robot
be ¢, and T}, r=1, 2, respectively, and the inserted delay times
Then, the

total traveling times of robots after a coordination are given as

between path segments i and i+] of robot 7 be atr.

=1+ S =1, Q)

From the description about coordination curves given so far, the
collision free coordination planning for two robots is converted to
a simpler problem of finding a continuous curve in two dimen-
sional space while keeping the curve from passing through some
regions (collision regions) in the space. The problem is formally
described as follows.
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Fig. 6. Example velocity profiles along time for (a) robot 1 and
(b) robot 2.
Redrawn velocity profiles along traveled distance for (c)
robot 1 and (d) robot 2. (¢) Resultant coordination curve.
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Fig. 7. Velocity profiles after some delay time are inserted for
(a) robot 1 and (b) robot 2. (c) Resultant coordination
curve after inserting some delay times.

Problem : For a given coordination curve, c, corresponding to
independently planned trajectory pair, find the set of 4¢f so that

the modified coordination curve may not pass through any
collision regions as well as minimize the following quantity.

T = max{T} T% g

We call the solution of the problem as delay time optimal
coordination curve. Before going into the problem directly, we
would better define some notations. There may be infinitely many
coordination curves which can be derived from ¢, by inserting
appropriate delay times between path segments so as not to pass
through collision regions. We call a set of such coordination
curves as CFCC,.,y S, Where each character means collision, free,
coordination, and curve, respectively. Among these curves, there
are two special ones : CFCCg,,, and CFCC},.,. We describe the
method how to get the CFCCy,, and the CFCC,,,, in the follow-
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ings. Note that both algorithms start with ¢, from initial point
(s', $H=(0, 0).

[Algorithm A)

Step Al : Follow the coordination curve under consideration
‘from current initial point in forward direction till the curve enters
a collision region or the curve hits final boundary (one of the two
robots reaches its goal position). If it reaches final boundary, then
‘s{bp. Else go to next step.

Step A2 : If the curve enters a collision region then follow the
coordination curve in backward direction to find an intersecting
 point of the coordination curve with horizontal boundary of
coordination space cell (an intermediate point of robot 2 between
path-segments). Calculate minimal delay time for robot 2. After
the delay time at the found intersecting point and updating the
clurent initial point with this intersecting point, go to Step Al.

Definition 3 = A coordination curve derived through Step Al to
Step A2 is called CFCCyyy.

[Algorithm B]

Step Bl : Follow the coordination curve under consideration
‘from current initial point in forward direction till the curve enters
collision region or the curve hits final boundary (one of the two
robots reaches its goal position). If it reaches final boundary, then
stop. Else go to next step.

Step B2 : If the curve enters collision region then follow the
coordination curve in backward direction to find an intersecting
point of the coordination curve with vertical boundary of coordi-
nation space cell (an intermediate point of robot 1 between path
segments). Calculate minimal delay time for robot 1. After the
delay time at the found intersecting point and updating the current
initial point with this intersecting point, go to Step Bl.

Definition 4 : A coordination curve derived through Step Bl to
Step B2 is called CFCCl,, With CFCCl,. and CFCClu, We
can classify all the trajectory pairs into three groups.

Case 1 : Both CFCCL,, and CFCC,,, reach the boundary
s = §' before they reach the boundary §* = S%.

Case 2 : Both CFCCy,, and CFCC},,, reach the boundary
2 = S before they reach the boundary ' = S',.

Case 3 : CFCCgu, reaches the boundary 's' = SiN. before it
reaches the boundary s* = &% and CFCC},, reaches the
boundary s* = §%, before it reaches the boundary s' = S%. -

If a coordination curve reaches s' = S, before it reaches the

boundary s* = $%, it means, in this coordination, robot 1

reaches its final goal position before robot 2 reaches its final goal
position, say, the traveling time of robot 1 is smaller than that of
robot 2. '

IV. Delay Time Optimal Coordination

1. Delay fI\‘ime Optimal Coordination Curve for Case 1.

Theorem 1 : For the Case 1, the delay time optimal coordi-
nation curve is CFCCL,, The proof of the Theorem 1 is given in

Appendix.

An example of case 1 is given in the Fig. 2. In Fig. 2, the
paths are made up of straight lines, and the intermediate points of
robot 1 in 2 dimensional work space are (0.2, 0.6), (0.48, 0.5),
(0.27, 0.45), (0.5, 045), (0.24, 0.4), (0.6, 0.3), (0.2, 0.2), (0.4,
0.4), (0.6, 0.01), (0.2, 0.01), and (0.2, 0.1) in sequence from
initial point and (0.65, 0.6), (0.32, 0.5), (0.55, 0.48), (0.25, 0.42),
(0.5, 0.42), (0.27, 0.35), (0.6, 0.32), (0.31, 0.23), (0.61, 0.23), and
(0.61, 0.32) for robot 2. The sum of inserted time for CFCCY,,

is 0.3 +0.13=0.43 second and 0.16 second for CFCCZ,, So, the
total traveling time of the time optimal solution -are 4.0067 second -
and 3.3561 second for robot I and 2, respectively. Note that the
traveling times of the original trajectories are 4.0067 second and
3.1961 second for robot I and 2, respectively. For the case of Fig.
2, we apply the above algorithms and get the result of Fig. 8.

2. Time Optimal Coordination Curve for Case 2.

Theorem 2 : For the case 2, the delay time optimal coordination
curve is CFCC,

Proof of the Theorem 2 is exactly the same with Theorem 1 if
we interchange the robot 1 and robot 2 with each other, hence it
is omitted here.

[m]
g2

Fig. 8. The two boundary curves for the case of Fig. 2.
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Fig. 9. (a) Example configurations and paths corresponding to
case 2. (b) The resultant boundary coordination curves.

Example configurations of the case 2 is given in Fig. 9 where
the intermediate points in 2 dimensional work space are (0.2, 0.6),
(0.48, 0.5), (0.3, 0.48), (0.55, 0.42), (0.3, 0.42), (0.53, 0.35), (0.2,
0.32), (0.49, 0.23), (0.19, 0.23) and (0.19, 0.32) for robot 1 and
0.65, 0.6), (0.32, 0.5), (0.53, 0.45), (0.3, 0.45), (0.56, 0.4), (0.2,
0.3), (0.6, 0.2), (0.4, 0.4), (0.2, 0.01), (0.6, 0.01), and (0.6, 0.1)
for robot 2. The total traveling lengths of the path and the total
traveling times of the original trajectories are 2.2509 m, 3.0525
m, 3.0013 second and 4.0700 second for robot 1 and robot 2,
respectively. With these paths and the same velocity patterns of
case I example, we got the collision map, CFCC,. and
CFCC,,, as shown in Fig. 9. Total sums of delay times are 0.29
+0.12 = 041 second for CFCCl,, and 02 +0.65 = 0.85

second for CFCCy,,. So, the optimal coordination curve gives
3.4113 second for robot 1 and 4.0700 second for robot 2.

3. Time Optimal Coordination Curve for Case 3.

Theorem 3 : Among CFCC,kuy's, the delay time optimal

collision free coordination curve exists in the regions enclosed by

CFCCl,,, and CFCCp,, (including the boundaries).

Before proving the Theorem 3, we define the set of notations
needed in the proof. Let the curve equation corresponding to
CFCCluy be

$ = f(shH ®
and the curve equation corresponding to CFCCL,,, be

st = f1(sH )

Then, some subspaces of the collision free coordination space
are defined as follows.

Definition 4 : When an element in CFCC,,,, is described as
£ = fsY, Ci» Ciw C!, are defined as the collection of
coordination curves which satisfy the following conditions in

order.

() < A9 <), 0 <5< shy (10)
A <7 (), 0<s5< sy (§3))

CAS) 2 (e, 0< s < sy (12)

where s', is the entire traveling length of robot 1.

Definition 5 : When an element in CFCC,,, is described as
s = f(s"), Cou is defined as the collection of coordination curves

which satisfy the following condition for some s < (0, S

Rs) = (9 13)

Clus is also defined by replacing £ (s) in the definition of
Cos With f*(s). One can easily know that

CFCCauy = Cin U Cou U Cou U Clos U Cous (19

Lemma 1 : When the traveling times of an element ¢ in CFCC
for robot 1 and 2 are given as T'(c) and T%), the following
inequalities are satisfied for any ¢ e C,,.

T'(0) = T'(CFCCpu) as)
T% o) 2 THCFCCau) (16)

Lemma 2 : The followings are satisfied for any ¢ e C,.

T(c) 2 TN(CFCCL,) a”n
T o) = THCFCCL.,) ' 18)

The proof of Lemma 2 is omitted here because the concept is
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exactly the same with Lemma 1.

Lemma 3 : When two coordination curves intersect with each
other, the slopes of the curves at the intersect points are the same
with each other, say, the two curves intersect tangentially.

Lemma 4 : For any c € (Coue U Chus)s there exists & e Cy

satisfying
FGCERIC) . a9

The proofs of Lemma 1, 3, and 4 are given in the appendix.
With the Lemma .1 through 4, the Theorem 3 has been proven.

Even though the fact that the delay time optimal coordination
curve exists in C,, is proven, any analytic method determining the
curve has not been developed yet. So, in this work, we apply the
method searching the solution efficiently in the space Ci.

Whenever a coordination curve intersects a collision region, there"

are two choices to avoid the collision: one is to delay robot 1 and
the other is to delay robot 2. Let the number of collision regions
inside C;, be N. Then there are 2¥ cases for search at most. So,
after checking this finite number of cases one can determine the
optimal solution. Actually, however, the search space is drastically
- reduced by introducing a checking step for the accumulated delay
times at each step of inserting delay time for collision avoidance.
After inserting a delay time for collision avoidance, accumulated
delay times for robot 1 and 2 are constantly compared with the
total inserted delay times of CFCCl,, and CFCCy, respectively.
If the sums of delay times just after inserting a delay time at a

intermediate point between path segments is greater than those of '

CFCClysy OF CFCCpu, We stop there, exclude the coordination
curve from solution candidates, and return to the initial point to
start ‘with next one. By doing so, many of the candidates are
excluded from the solution in early stage of the checking. The
optimal solution is selected from the remaining ones.

Example configurations corresponding to case 3 and the
resultant solution with the velocity profiles of previous case is
given in Fig. 10. Even though 5 collision regions (25 candidates
for solution) are located inside the interesting region, only 3 or so
candidates remain till the end and others are excluded from
solution candidate in early stage of searching. In Fig. 10, the
points between path segments are (0.2, 0.6), (0.48, 0.5), (0.27,
0.45), 0.5, 0.45), (0.24, 0.4), (0.45, 0.35), (0.3, 0.3), (0.35, 0.4),
(0.35, 0.01), and (0.2, 0.01) for robot 1, and (0.65, 0.6), (0.32,
0.5), (0.55, 0.48), (0.25, 0.42), (0.5, 0.42), (0.27, 0.35), (0.6,
0.32), (0.3, 0.22), (0.3, 0.15), (0.35, 0.15), and (0.35,' 0.2) for
robot 2. The total lengths of the paths are 2.0337 m and 2.1896
m, and the total traveling times of original trajectories are 2.7117
second and 2.9195 second for robot 1 and 2 respectively. Also,
the sum of inserted delay times for robot 1 in CFCCl,, is 0.3 +
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Fig. 10. (a) Example cbnﬁgurations of robots corresponding to
case 3. (b) Solution for the example.

0.15 + 0.1 = 0.55 ,secohd, which gives 3.2617 second fbr robot 1

“and 2.9195 second for robot 2. The sum of added delay times for

robot 2 in CFCCgy,, is 0.17 + 0.23 = 0.40 second, which gives
2.7117 second traveling time for robot 1 and 3.3195 second
traveling time for robot 2. Finally, the sum of inserted delay
times of the optimal coordination curve are 0.15 second and 0.17
second for robot I and robot 2, respectively, which gives total
traveling times of 2.8617 second for robot 1 and 3.0895 second
for robot 2. ‘

V. Conc]ludlﬁng Remarks

In this paper, a coordination planning method for dual robot
systems executing complex tasks is proposed. In the method,
collision avoidance and time optimality are taken into comsi-
deration under the assumption that the trajectories be composed of
several segments along which robots repeat moving and stopping.
The proposed method may be called planning-coordination
decomposition technique. Since the method irtends to fully utilize
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the independently planned trajectory of both robots, it does not
need any complex modifications to original trajectories such as
speed changes or delaying the robots at the middle of the
segments. ' _

The proposed algorithm starts with given trajectories of two
robots which are planned independently t9 each other. After
constructing a coordination curve corresponding to the indepen-
* dently planned trajectories, we check whether collision occurs or
not in the space called coordination space which shows collision
map. If collision occurs, some delay times are inserted between
path segments so that the resultant coordination curve may not
pass through the predefined collision regions. The optimality
criterion adopted in this paper is to minimize the traveling times
of both robots.

When a coordination curve passes through a collision region,
there are two ways for avoiding collision: one is to delay the start
of robot 1 in the interested path segment, and the other is to
delay the start of robot 2. The former causes the modified
coordination curve to pass over the collision region and the latter
causes the modified coordination curve to pass below the collision
region. In calculating optimal collision free coordination curve,
two special coordination curves are constructed to classify the
whole solution space into three groups by examining the traveling
times of these two spécial collision free coordination curves and
the traveling time of original trajectories. The methods of finding
solution for each case are developed and proved.

For the case of nonzero job execution times between path
segments, the proposed method can be applied by overlapping the
job execution times together to the delay times introduced for
collision avoidance.

To apply the proposed technique in practical cases a safety
consideration such as enlarging the collision regions should be
included.
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Appendix

Proof of Theorem 1 : Let the independently planned traveling
times of the robots be 7} and 7% respectively. And let the
traveling time corresponding to the modified coordination curve of
CFCCluy be T}* and T}, respectively. Since we got CFCC,,
after adding delay times,

T, < T} 20)

For any CFCC},, in case 1, robot 1 reaches its goal position
‘before Tobot 2 reaches its final position. So,

T/l+ < T2+, (21)

and since no delay times are added to robot 2,
T} = T (22)
Finally, for the case 1, we get

T, = max(T). T = mx(T}, T} = T} @3)

which means traveling time of slower robot for CFCC,,,, is same

to the ones of slower robot of original trajectory, i. e, smallest
traveling time.

Proof of Lemma 1 : From the definitions of C}, and C,, ¢
in C,, moves always below CFCCy,, in coordination space. This

is possible only when the motion of robot I of ¢ is faster than
that of CFCCp,, or when the motion of robot 2 of ¢ is slower

than that of CFCCg,, The first case is impbssible because the
motion of robot 1 of CFCC,,, is original one (c¢,), say, no delay

times are added.

Proof of Lemma 3 : Even in the case where some delay times
are inserted between path segments, the velocity profiles of robot
I and 2 with respect to S’ and §° respectively are never changed.
Note that the two independent variables, s’ and § , of a
coordination space are the traveled distance of two robots, and the
slope of a coordination curve at a point in the.coordination space
is determined from the velocities of two robots at that point.
Since the velocities for a specified value of (5, S") are never
changed by inserting any delay times and hence the slope of a
coordination curve passing a point is never changed, the lemma is
proven.

Proof of lemma 4 : If we construct a coordination curve over
0 <'s' < S' from the following rules

F(sH AsH > FshH
AsHh={ £ AsH < F(sH (24)
Ash) FH < AsY < F(sH

and denote the curve ¢ = 7(s') as & then ¢ is obviously a
collision free coordination curve and is an element of C;. Also,
from Lemma 2 and 3, the equation (6) has shorter traveling time
than that of c.
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