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Asymptotic Analyses of a Stafistical Multiplexor
with Heterogeneous ATM Sources

Hyong Woo Lee and Jon Wei Mark

Abstract

Two asymptotic analyses of the queue length distribution at a statistical multiplexor supporting heterogeneous exponential on-off sources

are considered. The first analysis is performed by approximating the cell generation rate as a multi-dimensional Ornstein-Uhlenbeck process

and then applying the Benes queueing formula. In the second analysis, we start with a system of linear equations derived from the exact
expressions of the dominant eigenvalue of the matrix governing the queue length distribution. Assuming that there are a large number of
sources, we obtain asymptotic approximations to the dominant eigenvalue. Based on the analyses, we define a traffic descriptor to include

the mean and the variance of the cell generation rate and a burstiness measure. A simple expression for the quality of service (QoS) in

cell loss rate is derived in terms of the traffic descriptor parameters and the multiplexor parameters (output link capacity and buffer size).
This result is then used to quantify the factors determining the required capacity of a call taking the statistical multiplexing gain into consi-
deration. As an application of the analyses, we can use the required capacity calculation for simple yet effective connection admission

control (CAC) algorithms.

I. Introduction

The Asynchronous Transfer Mode(ATM) has been recognized
as a promising transfer mode of realizing the broadband ISDN.
An ATM network is a mesh connection of switches and multiplex-
ors in which switching and multiplexing are cell-oriented. Moreover,
ATM offers connection-oriented service through the establishment
of virtual channels and virtual paths. One physical link can
support many virtual channels. It follows that an output port of an
output- buffered switch must handle multiplexed transmission of a
number of virtual flows. Thus, statistical multiplexing takes place
at interior nodes as well as at user-network interfaces.

It is expected that an ATM network will carry a variety of traffic
types including voice, data and video. Unlike data traffic in a
conventional computer network, interactive voice and video calls
in a packet switched environment generate cells with a high degree
of time correlation [1-4]. In order to provide the quality of service
(QoS) assurance to the calls having various cell generation pro-
cesses, we need an analytical model for predicting the queue
length distribution. Traditional queueing analysis using a Poisson
or batch Poisson process to approximate the cell arrivals fails to
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capture the effect of the time correlation of the cell generation [5].
In this paper we assume that the cell generation process of a
call can be represented by a single exponential on-off source [1],

by a number of identical exponential on-off sources [3] or by two

or more types of exponential on-off sources [4, 11]. Observing
that the cell transmission time is often very small compared to
the length of an on period, many researchers have successfully
used the fluid flow approximation to predict the queue length
distributions of a statistical multiplexor [4, 6, 7]. Although the
fluid flow approximation simplifies the analysis, the exact analysis
becomes computationally intractable, as the number of types of

on-off sources increases and the number of on-off sources in each

type increases.

As the ATM link capacity increases, it is likely that the number
of source types and the number of source of each type increase.
In this paper, we obtain simple asymptotic approximations for the
queue length distribution assuming that the number of on-off
sources in each type is large. We show that this approximation
gives an asymptotic upper bound on the exact queue length distri-
bution and can be used to conservatively estimate the cell loss
rate. As a by-product of the analyses, we obtain a simple relation-
ship among QoS in cell loss rate, the traffic descriptor (mean,
variance of cell generation rate and a measure of burstiness) of a
source and the required capacity, the portion of capacity used by
the source.

The paper is organized as follows. In Section 2, we review
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known results on the queue length distribution analysis using the
fluid flow model. We then provide further motivation and assump-
tions used throughout this paper. In Sections 3 and 4, we present
two asymptotic analyses of the queue length distribution. We then
discuss the relationship among the traffic descriptor, the required
channel capacity and the cell loss rate performance in Section 5.
In Section 6, we comment on a possible method of obtaining the
traffic descriptor parameters using an estimate of the autocorrlea-
tion function of the cell generation rate. The paper is concluded
in Section 7.

II. Known Results and Assumptions

Under the assumption that 1) a cell can be described as an on-
off source cells are generated at a constant rate during an on period
and no cells are generated during an off period, 2) the length of
on and off periods are exponentially distributed and 3) all the
calls are independent.and statistically identical (referred to as
homogeneous), Anick et al. [8] have provided a simple algorithm
for determining the queue length distribution of a statistical multi-
plexor. Kosten [9] has reported efforts to extend the analysis of
Anick et al. for non-homogeneous sources (the sources may have
non-identical mean on and off periods and cell generation rates)
and the sources with non-exponential on periods. He offers an
approximate solution for the cell loss rate as g *” where B is
the multiplexor buffer size and zp is the dominant eigenvalue
(largest negative eigenvalue) of the matrix governing a system of
linear equations. He has proposed to obtain the coefficient, 3,
using simulations. Stern and Elwalid [10] have discussed the solu-
tions to the multiplexor queueing analysis where the source
~ generate cells at the rate modulated by a Markovian source state.
Assuming that the modulating process is reversible, they have
provided a computationally efficient algorithm for obtaining the
eigenvalues and the bounds on the coefficients needed to assess
the cell loss rate at the statistical multiplexor. Although their
algorithm considerably simpliﬁeé the computation of the eigenvalues
and the bounds of the coefficients, the computation effort is still
significant when the number of types of the sources andfor the
number of states of each source type is large.

In [11], the authors reported an effort to represent an arbitrary
time correlated cell generation process using two types of exponen-
tial on-off sources. It was demonstrated that an arbitray call or a
group of calls can be closely approximated by an aggregate cell
generation process of two types of exponential on-off sources as
far as the effect on the queue length distributions is concerned. It,
therefore, will be useful to have a solution for the multiplexor
queueing problem where there are K types of exponential on-off
sources. By specializing the analysis of Stern and Elwalid [10],
the authors [12] obtained a simple approximation to the upper
bound of the coefficients for such a problem. Even though the

approximation simplifies the queueing analysis, the computation
can be still time consuming especially when the number of types,
K, is large. Moreover, it is very difficult to gain much insight
into the system behaviour using such an analysis.

We discuss analyses of the queue length distribution of stati-
stical multiplexing under the following assumptions:

1. There are K types of exponential on-off sources. Type k
sources are described using four parameters (A, e 7e Mo,

where N, is the number of type k sources, 7, is the cell

generation rate while in an on state, and 3,! and ;!

are,
respectively, the mean duration of the on and off states.

2. All the source are independent of each other. )

3. The multiplexing buffer is B cells in length and the output
link capacity is ¢ cells/sec.

4. We will concentrate on a node at which up to B cells be
stored at its output buffer. Cells arriving to a full buffer are
lost. The cell loss rate, P., is usually very low, 10°-10", and
can be approximated by

P~ G(B),

where G(x) £lim—... Pr{Q(H)>x], and Q(?) is the number of
cells in the buffer at time ¢ assuming an infinite buffer size.

It is noted that a cell may be characterized by a combination of
an arbitrary number of (elemental) sources.

As the system grows, i.e., as ¢ increases, the number of sources '
that can be accommodated in each type, Ni(k=1,....,K), is likely
to increase. Under this scenario, even a simple approximation given
in [11] tends to be computationally time consuming. In this paper,
we discuss a number of asymptotié approximations to the function
G(x) under two limiting conditions:

1. x— co, This implies that an asymptote of form Fpe “* is a

good approximation to G(x).

2. Ni— oo while keeping the aggregate mean, variance and the

time constant of the type k source constant at A,, >} and 7,

(k=1,....,K), where

Ay = N 1o by,
= NEBI 00,
a
w = /115’ + K,
pe = Au/ne (activity factor)

This approximation, while not preserving the original process of

cell generation, gives us several advantages.

1. The number of parameters needed to describe a particular
type of source is reduced to three, namely (A,,3 %, 7., ),
from four in (A, z,, 73, N or equivalently (4,, 2%, 7,.N).

2. The reduced parameter set is easier to measure than the
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original set. This allows a possibly easier policing by the
network service provider after the user-network interface
(UNI) - unit.

3. The collection of type k source represented by the three para-
meter set(A,, > %, 7., ) behaves in the most pessimistic man-
ner among the sources described by (A,, 23,7, N). As will
be seen later, the dominant eigenvalue increase (decreases in
absolute value) as Nj increasse among the group of sources
which have the same values of 4,,%% and 5. Therefore,
the cell loss probability predicted using the approximate
model tends to be larger than actual cell loss probability.

4. The use of the reduced parameter set gives a useful insight
into how the parameters influence in determining the capacity
requirement for a given type of sources satisfying the pre-
scribed cell loss criterion.

For a statistical multiplexor with a single type of on-off sources
(K =1), Simonian and Virtamo [13] gave an asymptotic solution
as Ny — o and x'— o by first approximating the aggregate cell
generation rate with an Ornstein-Uhlenbeck(O-U) process and then
applying the Benes queueing fromula [14]. Recently, Kobayashi
and Ren [15] generalized the problem for K > 1 by first approxi-
mating the aggregate cell generation rate with a multi-dimensional
O-U process and then solving a set of partial differential equations.
These provide very simple asymptotes. However, as shown in
Section 2, they tend to significantly underestimate the dominant
eigenvalues especially when the channel utilization is low. There-
fore, instead of conservative estimates of the cell loss rates, they
are likely to give optimistic results.

We provide a more accurate asymptotic approximation to the
queue length distribution in a closed form in the following two
sections. In Section 3, we first generalize the analysis of Simonian
and Virtamo [13] for the case of K =2. This provides an alter-
native derivation of the dominant eigenvalue obtained by Kobayashi
and Ren [15] for -K=2. It also allows us to obtain a better
-approximation to the coefficient corresponding to the dominant
eigenvalue than that used in [15). We then demonstrate, by numer-
ical examples, that these approximations can be too optimistic
when the channel utilization is moderate to low. In Section 4, we
provide an alternative approach to obtain an-approximation to the
dominant eigenvalue by taking the limit Ny — o at a later stage
of the analysis than the analysis of Section 3. This solution allows
us to have a more accurate approximation while keeping the level
of computational complexity to that in the previous analysis. The
solution obtained in Section 3 is shown to be a special case of
the more general solution obtained in this section.

IM. Asymptotic Analysis I

In this section, we first summarize the asymptotic approxima-

tion to G(x) for K=2 given in Appendix A. The results are .

essentially a generalization of the solution obtained by Simonian
and Virtamo in [13]. The key here is to represent the aggregate
cell generation rate as a two dimensional O-U process, use the
Benes queueing formula, and expand the resulting integral to
obtain an asymptotic expression for G(x). For K =2, we have

G~ Bre ™, @
where
;= —ge=A
° > f=12 dm’
B _ z e—?ﬁ&
° V2r(c—A) ’
K
A = kz=:1/1k,
=2k
K
s = 2 (Zk/ﬂk)

It is noted that eqn. (2) reduces to the asymptotic approxi-
mation obtained by Simonian and Virtamo [13] when K = 1. Al-
though the derivation in Appendix A is only for K=2, it is
conjectured that the above result can be generalized to an arbirary
integer K (= 1). In fact, it was shown by Kobayashi and Ren [15]
recently that the dominant eigenvalue of their solution is identical
to z, for any K = 1. It is also noted here that z, can be obtained
as a first order approximation of the equation solved in Section 3.
The utility of the present analysis is, therefore, not in the deriva-
tion of z, but in the derivation of a good approximation of the
coefficient corresponding to the dominant eigenvalue, 3.

In Fig. 1, the z’s (dotted lines) are compared with the exact
values of the dominant eigenvalue (solid lines) for identical sources
(K =1, we omit all the subscripts denoting source type). In this fig-
ure, we keep the mean, variance of the aggregated cell arrival rate
and the time constant ( 7) of the cell arrival rate at 10, 10 and 2,
respectively, and vary the number of sources from 20 to 500. Also
included in the same figure are the asymptotic values of the dom-
inant eigenvalues (dashed lines) as N — oo (This is derived in
Section 3 and shown here for comparison.). It is shown that z, is
a good approximation to the exact dominant eigenvalue when the
channel utilization, o(2A/c), is large. However, as p decreases,
Z, severely underestimates the dominant eigenvalue. Therefore, the
use of Z, in calculating the cell loss rate is likely to give an opti-
mistic result.

In Fig. 2, we plot the coefficients corresponding to the donminant
eigenvalues vs N using the same parameters as in Fig. 1. Exact
coefficients are shown by solid lines and B,’s are shown by dashed
lines. In the same figure we show the coefficient used by Kobayashi
and Ren [15] in dotted lines. They have approximated the coeffi-
cient using the theory of large deviation as
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where 62(c—A)/T % It is seen that 2, gives a very good approxi-
mation for a wide range of parameter values. It is also shown in
the figure that g{"® closely approximates g, for o >0.7. How-
ever, as utilization decreases g5*® tends to overesfiimate B, signi-
ficantly. Although we do not have a theoreticélly exact limit on
B, as N approaches infinity, it seems that con;/ergence of g, is
much more rapid than that of z, We also observe that the higher
the channel utilization the faster convergence takes place.

In Figs. 3 and 4, respectively, we compare the exact and
asymptotic approximations of donﬁng_pi éigenvalue and the corres-
ponding coefficients for K=3, N>=2N;, N;=3N,. We increase
the number of sources in each type by the same factor with 3-
parameter representations of type 1, 2 and 3.given by (10, 10, 2),
(5, 20, 1) and (1, 20, 1), respectivety. Similar observations as in
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Figs. 1 and 2 are made.
IV. Asymptotic Analysis II

It was shown in Section 2 that the asymptotic approximation
obtained by first approximating the cell generation rate with an
O-U process, while giving a very simple cell loss rate expression,
can be too optimistic especially when the channel utilization is
low. In this section we will derive an alternative asymptotic approx-
imation which gives a pessimistic (conservative) estimate of the
cell loss rate. '

First we consider a system with only one type of sources (say
type k). Suppose that N; type k sources share a statistical multi-
plexor whose output link capacity is c.. Assuming that the buffer
size is infinite, the steady state probability that the number of
cells is greater than x is asymptotically (as x — o) given by
Bee %, where the dominant eigenvalue z, is [9]
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_ Ae _ Hi
% = cul N, ni—c/ Ny’ (3)

Expressing z, in terms of (A,,,Zi,m,,N,;) and pl2A,/c) we
obtain

___ Amwei1-0) @
012 3= (1—pp) AN,

Zy =

It can be seen that for pr<px<1, 2z, increases (decreases in

absolute value) as we increase N; while keeping A,, 23 and 7,

constant. Define

. o A ’
Zp& },}anzo(Nk) == z’:m'{ (1—p0- &)

Among the source whose mean and variance are respectively given
by Ar and 3% and time correlation is given by 7,z is the
upper bound of the dominant eigenvalue when the channel capa-
city-is /A4 o It is also noted by examining eqn. (4), z; is a good
approximation to z, for ps=1. The dashed lines represent 2; in
Figures 1 and 3 and approach the solid lines representing exact
values of z, as N; andfor p; increase.

Now consider the case of the heterogeneous inputs. The domi-
nant eigenvalue can be obtained by solving

Aol —pp) - . - '
,OKZ i_(l_pk)Ai/N[,’ (k_l""’K)’ (6)

2y = —

with 3% c,=c [9, 10]. This effectively is saying that we can
conceptually partition the system into K parallel subsystems: the
K" subsystem has an output channel of capacity cx and has type k
sources as its inputs. The dominant eigenvalue of the original sys-
tem is obtained by partitioning the available capacity ¢ into K

regions, (ci, ¢, ...,Ck), in such a way that the dominant eigenvalues

of the subsystems are the same, which in turn are identical to the
dominant eigenvalue of the original system. Because the above
equation does not lend itself to a simple solution, we seek a
dominant eigenvalue for the case when the number of sources in
each type of source approaches infinity. Therefore, we have a
simpler problem.

) A
2y = _'—z—k_”z:(l"pk)’ (k=15 -~*3K)’ (7)
o = Aifcw ®

2
Define Ay= /Ev: , then we have

1+2, 8, (k=1,....K), (10)

— A__ = ‘
G = 1425, *k=1,....,K). (11)

Ok

For pr<pi<1, we have 0 < | za, | = 1- o < 1-pp < 1. Therefore,

eqn. (9) can be rewritten as

K oo . .

EIA,,;Il[1+(—-1)’(zaA,,)’] =c (12)
Because z; = — | z; | 4,>0 and A = 0, eqn. (12) can be written
as v

K oo N . V

kglAkiZ:o( lzgla) =c 13

We denote 2, as the J* * order approximation of z], which satis-

fies the truncated equation
£z 1Y=¢ (14)

where S;2 3K ,4,85(=0,1,..). If there is at least one type of
source whose variance of cell arrival rate 32 is non-zero, S;> 0
for all j > 0. §;=0( >0) corresponds to the system with only
constant rate sources. For the remainder of this paper we assume
that there is at least one type of sources whose cell generation
rate is not constant.

Since S; >0, (j = 0), the following facts may be easily verified.

Fact 1. | z;” | is a monotonically decreasing function of J.

Fact 2. There exists a unique positive solution for | z;*” | of eqn.
(14). Other solutions, if there is any, are either negative
or conjugate complex pairs.

First order approximation, z;":

o« _ €78, _ =k A,
% Si—1 = SE M, (15)

It is noted that z}¥ is identical to the dominant eigenvalue z,
obtained in Section 2 for K=2 and also obtained by Kobayashi
and Ren for K > 1 [15]. This approximation is only good when
the po,’s are close to 1. (See Figures 1 and 3. The dotted line
corresponds to the first order approximation.)

.

Second order approximation, z;®: This solution of the second

order equation is

25(2) = —| 25(2) | = SI_V S%+4SZ(C_SO) (16)

2S5,

Third order approximation, z;'®: The solution of the second order

equation is
. . S$,/3— (T + T,
20(3) — — |20(3) | = 2/ fg 1 2) (17)
3
where
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Tl =3 _%'f'

T, = -° %ﬂ/f.
az 03
To = Tl+‘2'7(l N
3555, —S%
= 73
: _ 253-9535,5, +275¥(Se—¢)
a) = 27

In Appendix B, it is shown that | ;¥ |in eqn. (17) is the
unique positive solution of the truncated third order equation. .

In Fig. 5, the J* order approximation of the dominant eigenvalue
vs J.is plotted for a single type of source with A =10, 32=10
and 7=2. It is seen that the approximation converges to the exact
value of z; rapidly as the order J increases. Even for a relatively
low utilization ( o =0.6), the second or third order approximation
seems to be accurate enough. Furthermore, since 2] is an upper
bound of z, we may safely use these lower order approximations
(2® or z™) to predict the cell loss rate in a fairly conservative
manner. We will examine these later in this section.

Before presenting numerical examples to illustrate the use of
these approximations, we need an approximation to the coefficient
of the corresponding dominant eigenvalue. Attempts were made to
obtain an asymptotic expression for g, using the previous analysis
on the upper bound of 8, [12]. However, a useful, yet bsimple,
solution has not been obtained. We, therefore, use B, obtained in
Section 2 to approximate g, In Fig. 6, we compare the exact
upper bound (solid line), exact asymptote!) (8,e **, dashed line)
and approximate asymptote (Bee ® : J=1 star(*), J=2 dotted
line, J =3 dot-dash(-.-)) of G(x) for two types of source whose
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Fig. 5. Dominant eigenvalue vs the order of approximation(J).

1) Even if we refer to this as an exact asymptote, we use an approximate value
of 4, [12). The dominant eigenvalue, however, is exact.
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Fig. 6. Comparison of G{x) with various asymptotes(K = 2).

parameters are shown in the figure. For a large range of utilization,
the approximation gives an upper bound on the complementary
queue length distribution. In this example, the first order approxi-
mation seems to be reasonably accurate for o = 0.9. However,
the cell loss rate predicted using this approximation can be lower
than actual cell loss rate for’ 0 <09, The difference between the
second order approximation and the third order approximation
seems to be negligible. The second and the third approximations
consistentl); give an upper bound on G(x) except for a very small
value of x; therefore, it seems that we can use them to conser-
vatively estimate the cell loss rate.

V. Required Channel Capacity, Performance
Measure and Traffic Descriptors

Although ¢;, the portion of channel capacity assigned conceptu-
ally to type k traffic (see Section 3), is not exclusively used by

the type k traffic sources, it gives a rough measure of resource

A

utilized by type k sources collectively. Examining ci I

more carefully, we observe the following:

1. Since 0 < |z | 6,<1-p, we have Ax < cx <A/ pr. Note
that A/ p is the aggregate peak cell generation rate of type
k source. )

2. a (=2 %(A4ny) is a measure of dispersion of cell generation
rate which combines the effects of mean, variance and the
time correlation of the cell generation rate. The lafger YA
is, the larger ¢ is needed. Also, the larger the time corrlea-
tion of rate generation (the larger mean burst length (7;1) is,
the larger ¢; is needed. '

3. ¢k is also a function of | z; | which depends on the maximum
tolerable cell loss rate, P., and the buffer capacity, B, and
the system mhltiplexing gain reflected on g, through
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- PE
251 =~ log(%5%).

Althogh g, depends on type k traffic, unlike A, its depen-
dence is indircet. '

Consider the first order approximaﬁon of ¢ (from eqn. (11)):
Cp = Ak(1+ | 2(; | Ak)~

The extra capacity over the mean cell arrival rate A, for type &
traffic sources to absorb traffic dispersion in order to guarantee a
certain level of cell loss performance criterion is given by

=i

7%

et A log(BY) - (24,

Note that Ac; is approximately proportional to the rate variance
(=% and the mean burst length (1/74), and inversely propor-
tional to the buffer size (B). (Recell that we ae considering a
liminting case Ny — ©.) Also note that one can reduce Ac by
increasing the maximum tolerable cell loss rate, P., andjor increas-
ing the multiplexing gain which is accompanied by a decrease in

By :

If the traffic of a call is smoothed by reducing its peak rate by
1/2 thus reducing 3% by 1/2 then we can decrease the required
excess capacity, Acy, Toughly by 1/2 while keeping B and P, the
same. If the contribution of the traffic to the system is not the
major one, the assumption that the change in g, is not so signi-
ficant is reasonable. ‘ '

The discussions in this section so far seem to suggest that two
parameters /; and A are sufficient (at least asymptotically) to
describe the queueing behaviour of a statistical multiplexor. How-
ever, in order to determine g, or even its approximation Bo we

need more detailed description of the call.

VI. Measurement of Traffic Descriptor Values

It is necessary for one to determine the values of mean, variance
and the burst length of the cell arrivals of a call. In this section,
we consider a call process consisting of a number of identical and
independent exponential on-off sources [4, 6]. Then, it is possible

to obtain all the necessary values of the taffic descriptor parame-’

ters of a call (A4,,2 3, 5) by using the estimate of the autocorre-

lation fuction of the cell generation rate: Let

R(D & E[R(DR,(t + D),

where Ri(f) is the cell generation rate of call /. Then we have

relations

RO) = A2+ X3 18

lim () = 43 | a9)
o 2
[(IRG) ~ a%lar = 24 @0)
0 ] .

Thus we are able to estimate the values of the traffic descriptor
parameters using the autocorrelation function R(7).

Based on the discussions in [11] where, as far as the queue
length distribution is concerned, an arbitrary call can be approxi-
mated by a set of two types of exponential on-off sources, it would
be useful to obtain the values of two sets of ‘traffic descriptor para-
meters(types ./ and m) constituting a call from the estimate of the
autocorrelation function of the cell generation process of the call,
Of course, one can use the method used in {11] in which the num-
ber of moments of steady state cell arrival rates and the indices
of dispersion of the number of cells arriving in an interval are
matched to obtain the two-type representation. However, the method
is potentially time consuming to use. Attempts to obtain the para-
meter values using the autocorrelation function of the cell arrival
process have not been successful. It is possible to obtain 32

i . and Ay¥ A by ﬁttirig the autocorrelation function

with the theoretical curve. However, a separation of the mean cell
arrival rate between types / and m has not been achieved. Since
we are looking for a fairly gross approximation, we may be satis-
fied with the single type representation for which we have a simple
method of determining the necessary values of the traffic
descriptor parameters. _

A question may be raised about how to deal with the more
realistic case where the constituent sources are not exponential
on-off sources. Rather the elemental constituent source is general
on-off source. To that end we assume that eqn. (20} is also valid
for an arbitrary source. (Note that eqns (18) and (19) are valid
for an arbitrary on-off source.) This allows one to have a simple
mapping of an arbitrary on-ff source to an equivalent exponential
on-off source. Once the autocorrelation function of the source is
obtained, from eqns (18) and (19), one obtains A; and %% Using
eqn. (20), one then obtains the equivalent value of 7, 7.

For example, since the autocorrelation function of a periodic
on-off source is also periodic, 7/ of an equivalent on-off source
corresponding to the source must be ©2), Therefore, A, =0 and
c =/, for a periodic on-off source. This is reasonable because
our analysis is based on that the queue lenght is large (x — o)
and when the queue length is sufficiently large the variation of
the cell arrivals due to periodically alternating on and off states
of cell generations can be absorbed by the buffer alone without
providing excess link capacity.

Consider a system of N homogeneous on-off source in which
the length of an off period is exponentially distributed and that of
an on period is either Erlang-m or hyper-exponentially distributed.

2) In this case the lim,.» R(r) is defined as the average of the autocorrelation
function for one period.
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The mean on and off periods are ¢l and A7, respectively. There-
fore, we have po=my for the Erlang-m distribution and 4 =
{37 (o:/ud]™? for the hyper-exponential distribution (refer to
Fig. A.1). In Appendix C, we obtained the integral in eqn. (20) as

m+1
fom[R(t)—Az]dz-={ ﬁ “om ) [(/l+ )3] Erlang

@D

p: ) [ﬁ)j ] , hyper — exponential

Here, we generalize the time constant 7 to denote the inverse of
the mean cycle length (the sum of mean of on and off periods).
Then, from eqn. (20), the equivalent time constant, 7 ¥
by

is given

[

[ Z _2‘] - 1, hyper — exponential

(eq)

gl =

By taking the limit, m — o, of the Erlang-m distribution we fine

that 7“? =27 for the sources with constant on periods.
The squared coefficient of variation of an on period, C%y, is
given by
B ;ln—(zl), Erlang
oN=

n 0; .
ut 21 7(<1), hyper— exponential
=1 ft;

It is possible to realize various values of C%y using Erlang-m and
hyper-exponential distributions for an on period. In Fig. 7, we let
the mean and the variance of the aggregate cell generation rate
and 7 are 1, 1 and 2, respectively. In order to reduce the number
of parameters of the hyper-exponential sources, we let m =2 and

= 2014,

Hy = 202,

We then have 0(“‘)=40'1 o27. Comparisons between the exact

and approximate results are made for various channel utilizations

and coefficient of variations of an on period. The exact results
are obtained using the formula given by Kosten [9] with N = 10.
The approximate results are obtained using eqn. (5) with 7,
replaced by 7 “?. The figure indicates that the proposed approach
gives a resonable estimate of the dominant eigenvalue even for the
non-exponential on-off sources when the channel utilization is not
less than 0.75. As the utilization decreases and the coefficient of
variation decreases, the approximation deviates from the exact
result significantly. The difference .is most noticeable for the sources
with constant on periods ( %y = 0). We know that there are infinite
number of eigenvalues for a system with sources of constant on
periods; the dominant eigenvalue alone may be insufficient to
characterize the queueing behaviour in that case. The actual behav-

...mean-l vzdance-l ela-z..,.@.........;: ........ |

2_0, dominant aigervalue

umm (N-w)

2% 0z o4 05 08 1 T2 14 16 18 2
C_ON*2, Squered coetficlent of variation of ON period
Fig. 7. Exact and approximate values of dominant eigenvalues vs

Com

iour is more likely to be the result of many eigenvalues near the
dominant one. As a result the approximation may in fact be
reflecting the aggregated effect of the many eigenvalues near the
dominant one more accurately than it appears in the figure.

ViI. Conclusions

In this paper, we have analyzed the queue length distributions
of a statistical multiplexor for heterogeneous exponenetial on-off
sources. Under the condition that the queue length is large (x —
o) and the number of sources of each type is large (Ny — ), a
simple, yet reasonable, approximation for the queue length distri-
bution can be obtained. Besides giving us a conservative estimate
of the cell loss rate, this simplification allows us to observe the
relationship among the required capacity, maximum cell loss rate,
buffer size, the mean and the variance of cell arrival rate, and the

time correlation of the cell arrival rate.

We have provided a brief discussion of how one may measure
the values of the traffic descriptors from the autocorrelation func-
tion of the cell arrival process. A bossible extension of the pro-
posed analysis for arbitrary (not necessarily exponential) on-off
sources is also discussed.

Numerical examples indicate that the proposed approach offers
a simple characterization of the ATM traffic which captures the
most important features of a time correlated.cell arrival process.
Although, the analytic results using the proposed method deviate
from the exact results, the fact that they tend to be conservative

‘and that they provide a useful and explicit relationship among the

network parametrs (maximum cell loss rate, buffer size, multi-

. plexing gain), the user traffic parameters (mean, variance of the

cell generation rate and time correlation) and the required capacity
suggests the usefulness of such a simple characterization of the

ATM traffic and the corresponding asymptotic -queueing analysis.
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Appendices
A. Derivation of B,

We have the following problem: There are two types of sources.
At time t, sources of type k generate cells at the rate of Ri(f)
which satisfies

dR{($) = Ay — R(D)dt+ \/2—77/,2 WdWl(D),

where 7,,2 % and pi are given by eqn. (1) in the text, and Wi(r)
is a white Gaussian process with mean zero and unit variance. It
is known that as N; approaches infinity, the aggregated cell arrival
rate from sources of type k can be described by the above equation
[13]. The stationary distribution of R(f) is known to be Gaussian
with mean A; and variance 3% It is also known that total
number of cells arriving in [0, 7], K(%), is also Gaussian with
mean M(7, I, 1) and variance w(7) given that R(0) = Ik (k=1, 2),
where

M 1) = BLAc+ (= ADKnDI ),
WD = E(Sun)snd,

Q) = l—e®

£(6) = 20-3+4e”’~e7%

Our starting point is a generalization of equation (2.10) of [13],
that is

G < [Tar [ [ adx b B)(e=h-aWaR), 0 AD
where g:(x, &, )= PriK(?)-cT=x | Ri(0) =11, R0) =] and ¥
(lk) is the stationary distribution of Ru(t).

Owing to the fact that X(7) and R(f) are Gaussian, we can write
the left hand side of eqn. (Al), denoted by S(x), as

= c c—1 '
Sw= [ df [ [ (c—ti=0)adx, b ool

where

1 [_ [X+CZ'_M(Z', ll, 12)]2]
V 27zu(7) €xp 21(7) ’
Ry
o) = —Zﬁexp ——(% , k=1,2.

alx, I, ) =

Let &,=(L—A4) ]/ Z 4 74 = (e-a) | 2w (=1, 2), and
A=2,A, Then,

= [ s [ Bew(- S hn e, @

where

Ii(r, §) = exp [— (xter—Ar=&3 )? ]

2(2 2h2+l/( 7)

{2+ DM ar 0]

> P+
L |
L Y2+ uD
= (D),
b= — (x+cz'—/11' 21]’!1)2 2h2
Zzh2+v(1')

hy = h(’?/ﬂ')/’?/n (k=1,2),
Mx) = f:ﬁ e dr.

Since N(-)=<1, we have an upper bound of I(z, &), [, by
replacing N[a(Y;+b)] by 1 in 1. We then have

S(x) < j(;m—\/—E% J:ng—;r_ exp(—_zéi)jl(l‘, &)

_ (C__dr
_fo V 27(7) Lo,

where

D = [[ L 1z, &),

After some algebraic manipulations, we obtain, I, = I+, where

(x+cr—AD" }

_AY, -
1(2)(2') = -a—ﬁ_n' eXD{ 2[2%;1%4-2 §h§+v(r)]

(o = -;lz—i:\/—zz—; exp{—%(uo—uf/uﬁ)}N[ uy( 7 —uy /)],

A = AUZ{:{(—W101+WO)N[Z}0(71_01)]

wy _ w(n—w)?
+ 2 exp[ 2 ,
wi = 2, 22k
! Y, ZW+oD

we = c— A (x+ct—/lz')2 zhz
0 2, S +u(o)

b = (x+CT—‘AT)Z lhl
! S+ (o)

I i+ T+ u(o)
- 2 3k + (o)

> ikt

— 2,2
Uy ‘/l-l-a w1+ Z%h§+v(r)'
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(x+ cr~/lr)2 2

Uy = wwya + 2 %h%'l‘l}(l‘)
2 2, (xtcr—AD?
uy = wpa +
-0 0 Bt u(n)
Define

_ ("__dr ;
]i(x)—fo —W (z‘)lé(t)’ 3

Then, using Laplace’s method [16] one can show that as x— o

Jo{x) ~ exp ]\/—ﬂ(c D exp{ %[vo(rl—vl)]z}

Ji(x) ~ exp[— 5 ]\/—ﬂ(c A)

X\f ‘Tl_*_—zz—zmuz(h—

T &+ - _x 818 _ 2=
with 7 evaluated at 7 iy 61771+6zr72)’8"_(2 dat(k=1,2)

and

(x+cr—AD°

FO = S s i+

_ §x+cr—Az'22
HD = 5o

Noting that H(7*) = F(7*), one has

S0< exp - FG2 | ZLEBMFAIOLI R (43

V 2n(c—A)

Here the symbol < denotes an asymptotic upper bound. As x —
" oo, the left hand side of eqn. (A3) in turn approaches 2’

where
Fo= =G
0 Z§/01+Z§/7/z’
¥ = 2 HX Y 20,/ (20 + 2>)e—z“§<al+az)
0 V2n(c—A)

Since the role of type 1 and 2 can be interchanged, another
formula for 3’, can be obtained by interchanging the subscripts 1
and 2 in the above expression. For simplicity we will approximate
minimum of £,+3,(VEZ/(Z 72y and 3,+3 (VT /(2 ,+ )
by y(Z?7+x=). This not only simplifies the resulting expression,
but also makes the analysis of Simonian and Virtamo [13] to be
a special case of our analysis. With this approximation, we finally
have

G(x) < Bye — i (A9)

where

e e S
Sim+2 8 n

A= a4,
=1
2
> =z
k=1
é = Zi:(zk/ﬂk)

B. Proof of egn. (17)

There are three solutions. We need to show that of the three
solutions eqn. (17) gives the desired positive solution. If T, > eqn.
(13) has only one real root [17]. Owing to fact 2 of Section 3,
this root must be positive. Therefore, we only need to show that
T, >0 and y7,>d;/2 to prove that the soultion given in eqn.
(17) is indeed positive. If at least one of £y is non-zero, then S;
>0, (j = 0); therefore,

Qy = 35351_

> S$38,—8%
K K .

= kzlaAkAlAkAl(.A{—AkAl)
K K ) )

= Ela/lkAlAkAt(Az"zAkArf'Ak)
K K )

= EIEAL/LA;;AI(A/"A/)

This proves that T,>0. Also {7} > )/2, therefore, both T} and T>

are real.
C. Derivation of eqn. (21)

A source is in one of the (m + 1) states (see Fig. Al). Let S(¢)
and R(t) denote the state and the cell generation rate of the
source, respectively at . '

0, if S(9 = 0(OFF state)
R() =
1, ifS(H = i(:=1,..., m) (ON: state)

The random process S(f) is a continuous time Markov process
whose infinitestimal generator matrix is denoted by Q. Define

3) In this Appendix, Q, § and F are used differently than in Appendix A.
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(b) Hyper-exponential distribution

e

Fig. Al. Source with Erlang-m or hyper-exponential on periods.

A& (my @, .., Ty,

4

7 & ImPAS() =i, (i=0,1,...m),
o) 2 {y(D},

Y'(s) & {Yi(s)},

y{) & PAS(H =750 =1,

Yis) & Lly(D], (5,7=0,1,...,m).

12

The equilibrium distribution of S(z) is obtained by
Q=0, me=1,

where e is a column vector -of ones. Using the .initial condition
that

y ij(O) = 6,‘,‘,
and the forward Chapman-Kolmogorov: equation

Yy _

we find Y*(s) as
Y(s) = (sI-Q 7!, (A5)

where [ is an identity matrix.
The autocorrelation function of the cell generation rate of the
source, R(7), is given by

3, 1997 - : 39

R(7)

I

PAR(H=1]- PAR(t+0)=1| R(H =11

2w (1=PAS(+2) =01 () = ).

1=1

But
PAS(t+D =015 = A = [ fleo)yelr—r0)dmy,

where fi(7) is the probability density function of the remaining on
period until source reaches an OFF state starting from an ONi
state. The Laplace transform of R(7), ¥(s), is given by

09 = B m{L-Fi9Ya(9),

where F;(s) 2 #[f(2)]. Using the final value theorem of the Laplace
transform, we have
fm[R( D—A%Ydr = lims- f{ f [R(D)—(1—- no)z]dr}
0 . s o
(l _7[0)2 ]

S

(A6)
= lim [ O(s) —
s

Case 1 : On period is Erlang-m distrbuted (Fig. Al-(a)) :

The on period is Erlang-m distrubed: there are m stages in an
on period; each stage of the on period is exponentially distrubuted
with mean .;'. The infinitesimal generator is given by

-2 0 0 ... 2
sy —#o 0 ... 0
Q=10 1w -# ... 0,

0 0 0 ... —u

where i = my. The equilibrium distribution of the source state is

-k
To = Ttu’
7 ——ZE—-/IJr#, (i=1,...,m).

The remaining on period while the source is in an ONi state is
Erlang-i distributed. Therefore, we have

Fi(s) = (siglo)‘.

From eqn. (AS), we obtain,

(s+u9)™
(s+A(s+u)"Aug

Yl =

Finally, after some algebriaic manipulations, using eqn. (A6), we
obtain

fom[R(r)—Azldrz (’g—;l) (Tillﬁ]

Case 2 : On period is hyper-exponentially distributed(Fig. Al- (b)):
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The on period is hyper-exponentially distributed: when the source
ends an idle period, ONi state is chosen with probability g. The
length of the ONi state is exponentially distributed with mean ;'
We have

—A A od ... Ond

Hy —H 0 e 0
Q= | p 0 —p ... :0_ N
Mm O 0 —
x 1/
0 Va+ 2 2 (oilud’
o g u; . _
YT A medm G
. . Hi
) Fi(9 = stpt

vilo = [+a-2Z

We, therefore, have,

B aleh
A[/A+Z 7:1(0,'/#;')]3 )

Lw[R( D—A%dr=

>

since g=[32 %.(o:/ud]1”", we finally have

fom[R(Z')“Az]dl'= (,i::, Z%) —(i—j_%)@ .
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