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Abstract

In this paper, a modified adaptive sign (MAS) algorithm based on a mixed norm error criterion is proposed. The mixed
norm error crilerion to be minimized is constructed as a combined convex function of the mean-absolute crror and the

mean-absolute error to the third power, A convergence analysis of the MAS algorithm is also presented. Under a set of
mild assumptions, a set ol nonlinear evolution equations that characterizes the statistical mean and mean-squared behavior
of the algorithm is derived. Compulter simulations are cartied out to verify the validity of our derivations.

I. Introduction

The adaptive least mean square (LMS) algorithm |1]
and the sign algorithm [2] have received a great deal of
attention during the last two decades and are now widely
used in variety of applications due to there simplicity and
relatively robust performance. The algorithms aitempl to
minimize the mean-squared and mean-absolute estimation
arrors ai each iteration, respectively. Meanwhile, the adaptive
filtering algorithms (hat are based on high order error
pawer {(HOEP) conditions [3]-[7) have been proposed and
their performances have been investigated. Despite their
potential advaniages, these HOEP algoriths are much
less popular comparing to the LMS and sign algorithms
in practice since they can be very sensitive to the siability.

The paper by Walach and Widrow 13] seems to be the
first one dealing with the HOEP conditions in the stoch-
astic gradient adaptive signal processing. They presented
convergence analyses of the adaptive least mean fourth
(LMF) algorithm and its family. The performance of the
LMF algorithm is then compared with that of the LMS
algorithm (or different plant noise densilies in the system
identification mode. By evaluating the ratio
between Lhe misadjustment of the LMS algorithm and
that of the LMF algorithm, it was shown that the LMF
algorithm has subslantially less noiscs in the filter

coeflicients than the conventional LMS algorithm for the
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same speed of convergence, except lhe case when the
plant measurement noise of the unknown system has a
Gaussian distribution. The nccessary condition for the
convergence of the mean and mcan-squared behavior of
the LMF algorithm was also derived. The results in [3},
however, are somewhat restrictive due Lo the cmployment
of the wild assumption Lhat the filter coefficienls are
already close to the optimal valucs.

Douglas and Meng [4] examined a family of adaptive
algorithms based on general error critcria (or non-
mean-square error criteria) for which the error function
to be minimized was modcled as an arbitrary memoryless
odd-symmelric nonlinear function. It was shown that, in
the system identificalion mode, using an error criterion
oplimized for the plant noise densily can significantly
improved the overall performance and reduce the fluctua-
tions in the coefficient estimates. Pei and Tseng [5) also
investigated the performances of the HOEP criteria for
adaptive FIR fillers, and several important observations
were made. They showed that the HOEP criteria yield the
same optimum solution for any high order power when
the input signals are Gaussian processes. It was also
shown that the sign algorithm is preferred when the
signals are corrupted by an impulsive noisc.

Kim, el al. [6), presented a convergence analysis of the
least mean-absolute third (LM AT} algorithm by deriving
equations to characterize the statistical mean and mcan-
squarcd behavior ol the algorithm. They also investigated
the steady-stale responses of the LMAT algorithm and
compared the performance of the LMAT algorithm with
that of the LMS algornthm [7]. It was shown that the
LMAT algorithm is able (o converge lasler than the LMS

algorithm in many practical situations.
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More recently, the mixed norm based adaptlive algorithms
have been introduced in order to achieve the combined
benelits of different error norm crileria. Chamber, ¢t al.
[8] proposed the keast mean mixed norm (LMMN) adaptive
algorithm thal combines the LMS and the LMF
algorithms. A mixing parameter s used to control the
proportions of the two error norms. The LMMN algorithm
shows faster initial convergence than the LMF algorithm,
and has less misadjustment than the LMS algorithm.
They also investigated the convergence and sleady-state
properties of the algorithm in [9], and confirmed their
observations by computer simulations.

Chamber and Avionitis {10] also proposed another
mixed norm adaptive algorithm that is suitable for system
identification modes. The algorithm combines, this time,
the LMS and the sign algonithms. It was shown that the
proposed algorithm is robust to the presence of signifi-
cant impulsive noisc in the desired response of the filter,
while maintaining good accuracy in the stcady-state.

In this paper, a new adaplive algorithm, called the
modified adaptive sign (MAS) algorithm, is proposed by
combining the sign and the LMAT algorithm. The mixed
norm error crilerion to be minimized is conslructed as a
combined convex function of the mean-absolute error and
the mean-absolute error to the third power. Both error
functions arc the perfect convex functions with respect to
the filter coefficient vector, and thercfore the MAS algorithm
docs nol have local minima. A statistical convergence
analysis of the MAS algorithm is also presented. Under a
set of mild assumptions, a set of nonlincar cvolution
equalions that characterizes the stalistical mean and
mean-sqguarcd behavior of the MAS algorithm 1s derived.
Computer simulations are carried oul 1o verify the val-
idity of our derivations,

The MAS algorithm basically makes use of the fact
that the sign algorithm is relalively slow bul normally
stable, while the LMAT algorithm is relatively fast but
sensitive (o the stability. A motivation to the MAS algorithm
is therefore to retain the fast convergence property of the
LMAT algorithm and the robustness ol the sign algorithm

simultaneously.
II. Problem Statement

Now, consider the problem of adaptively estimating the
primary input signal d{(zn) using the reference input x(s).
Let H(») denole the adaptive filter weight vector of size

N. Define the reference input vector X(») as

X(n) = [x(m), x(n=1);-,x(n =~ N+ )], )

where [-)7 denotes the transpose of |-]. The Mixed norm

to be minimized is of the form
V(n) = a Effe(n)} + (1- ) Efletn)*} @

where E{-} denote a statistical expectation of {-} and « €
[0, 1] s 4 mixing parameter. Note that, for @ being 1 and
0, equation {(2) becomes the sign and the LMAT algonithm,
respectively. It can be readily expected that the perfo-
rmance of the MAS algorithm lies intermediate between
the two algorithms according to the choice of the par-
ameter a.

The MAS algorithm update the cocfficient vector H(n)
using

H(n+1) = H(n)+ X(n)[a +3(1- a)e (m)|signte(n)),

3)
where 4 is the adaptive step-size of positive value,
, 1 if e(n)z20
ugn{e(n)} = { . otherwise, 4
and e(x) is 1he estimation error at time n given by
e(n) = d(r) ~ H' (n) X(n). (s)

Let H,y denole the optimal coefficient vector given by

H,, =Ry Ry 03)
where

Ry = E{Xtm) X" (m}}, %)
and

Ry = E{d(m) X(n)}. 8)

Also, define the coefficient misalignment vector ¥ () as
Viny=H(n)-H,,, ©®)
and its aulocorrelation matrix K(z) as

Koy = EF(mpV 7 (m)), (10)

Using (9) in (3), we get
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Vin+1)=V(n) + u X(m)fa+3(1 - a)e’ ()] signfe(n)}

(1

The optimal estimation error &,,,(#) is given by

(M) =d(m)-X"(mH,,. 12}
Combining (5), (9), and (12). it follows that

&(n) = ey (1) = X7 (m) V(). (13)
Finally, let

ol (my= E{e* (m} w
and
bmio = Efetn () (15)

denole the mean-squarcd error power and minimum
mean-squared error power, respectively.

Convergence analysis of thc MAS algorithm is very
complicated du¢ to the exislence of the nonlinear and
high order powered error signal in the coefficient update
equation. We thus make the fotlowing assumptions in or-
der to make our analysis mathematically more traclable.

Assumption 1:d(»n) and X(2) are zero-mean, wide-sense
stationary, and jointly Gaussian random processes,
Assumption 2:The input pair {d(n), X(n)} at time 7z is
independent of {d(n), X(»)} al time &, if n #4.

A direct consequence of Assumplion 1 is thal the esti-
mation error &(n) in (5} is also zero-mean and Gaussian
when conditioned on the cocfficient vector H(n) (or
equivalently on V(»)). Assumption 2 is the commonly
employed “independence assumption”[2] and is valid if g
is chosen Lo be sufficiently small. One direct consequence
of Assumption 2 is thal H(#) is independent of the input
pair {d(n), X(n)} since H(xn) depends only on the inputs

at time # — 1 and before.
II. Convergence Analysis

Taking the statistical expectation on both sides of {11}

gives

E[V(n + I)} = E{V(rl)} + o E{ X(n)sign{e(n)}} o
+3u(] *a)E{X(n)ez(n).ﬁgn{c(n)]} )
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The second and the last expectation on the right-hand
side (RHS) of (16) can be simplificd using the fact thal
for an arbitrary Borel function G(-) and jointly Gaussian

random variables x, and x, [11]

E{)c2 G(x, )}E{x, X}

Elx, G(x)} = £

(17)

Thus, using (17} in conjunction with Assumption 1, it was
shown that |2|

E{ X(n)sign{e(n)}} . _\E - '(n) Ry EV(m}, )

where

Efe’ () V(n)} = o (m). (19)
Note in {18) that we have made use of the approximation
o {m=a.(n). (20)

Also, using (17) in conjunclion with Assumption 1 once

again, we have

E{X(n)e? (n)sfgn{e(n)}}

- 5{ E[X(n)ez(n)sign{e(n)} [V (n)]}

2
= —2\E o, (n) Ry E{V(n)} QN
We have made use of the followings in deriving (21):
E{IE‘(")F | V(n)} = 2J§ ajly (n), (22
7
E{X(n)e(m)|V(m} = Ry V(n), (23)

and the approximalion
Efo, (¥ (m] = o,(m) E{Y (). 24)

Note in (23) that we have made usc of the independence
assumplion (i.e., Assumption 2) as well as the ortho-
gonality principle.

Therefore, using (18) and (21) in {(16), we¢ have the
mean hehavior lor the coefficient misalignment vector of

the MAS algorithm as

- 2 1
E{V(n+1)} :{!N —,ua‘]; e Ry
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—6u(1 «-a)E o, (n) Rn.:'E{V(n)}, 25)

where /y denoics the N X ¥ identity matrix.

From (25), it is easy to show that the mean behavior of
the coefficient misalignment vector E{V (%)} converges to
the zero vector {or cquivalently, £{H(»)} is convergent to

H,;) if the convergence parameter p is selected to be

V27 o, (n)

dens [a+6(1—a)o-3(n)]2m '

Yn, (26)

where 2,,. represents the maximum ecigenvalue of the
mairix Ryy. Notice, unfortunalely, that there exist the
lime-varying funclions o2 (») and o.(#) in the upper
bound of the condition for u as was the cases of the
LMF and the LMAT algorithms (2], {6]. Since 2 (%) can
be often large at the beginning of adaptation processes,
we sce that the convergence of the MAS algorithm may
stilt depend on the choice of initial conditions. Unlike the
LMF and the LMAT algorithms, however, the upper
bound for u of the MAS algorithm contains thesc
time-varying funclions in both the numeralor and the
denominator, the risk can be significantly reduced according
10 the choice of the mixing parameter «.

We next derive an expression for the mean-squared
estimation error ¢? (n). employing (13) in {14} and using
Assumption 2, it follows

G2 (1) = by + EY T 0 X (1) X7 (m)V ()}
- 2E{V’(n) ,v(n)em,n(n)}

= ia HI{K(M Ry |, @7
where &y, is obtained by using (12} in {15} so thal
b - 0 i

and by Assumplion 2 as well as the orthogonality prin-

ciple,

E{V’ (M) X(me,, (n)} -0, 29)
and
E{V’ M XX (m) V(n)} = r{K(m) Ry} . (30)

Here, K(#) is defined in (10), and £#!-} denotes the trace

of {-}. Notice from (27) that if K{(»n) converges, so docs 4}

().
Finally, we need an expression for K(n) to complete
the analysis. Substituting (11) in (10) leads to

Kn+)=K(ny+ a4’ a’ Ry
+pa E[ V(n) X7 (n) sign{e(n)} ]
vua E[ X(m)V 7 (n) signie(n)} ]
+3u(l-a) E[ Vm) Xr(n)ez(n)sfgn{e(n)}]
+3u(l-a) E[ X(n)VT(n)e’(n)sign{e(n)}]
+62a(d —a)E[ X(n)x’"(n)e’(n)]

91—y E[ X XT(me'm)| )

We make usc of the followings to simplify (31):

‘ . i
E[ V(m X" (n}signfe(m} |~ - ?2; o (n)

KM Ry . (32)

E[ X(n)V " (n) sign{e(n)} ]z —‘E = 1(n) Ryx K(n), (33)

b[ Vim) X T (m)e’ (n) sign{e(n)} ]

~ —ZF o, (mK(m) Ry, (34)
n

E[ X(myV 7 (m)e’ (n) sign{c(n)| ]

= -ZJ_E- o, (M Ry K(n), (35
.4
E[ X(n) Vr(n)e’(n)]
~[ol () 1y +2 Ry K| Rx, (36)
and
E[ X)WV (m)e' (n) ]
~ 302 (n)[aj (M4 +3 Ry K(n)] Ry a7

In (32) through {37), we have made use of the following

approximations as well as the approximation in (20)°
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Efo,, @V @) = 6,00 K, (9)
E{cr:p, (n)} =~ ol (n), (39)
and

5{031,,(;:) Ry VMV T (1) Ry

o (M) Ry K(n)Ryy (40)

Therefore, combining (32) through (37) with (31), we ob
tain the expression for the mean-squared behavior of the

coefficients of the MAS algorithm as

K(n+1y=K(n)-24" Ry

2 1 a 2
_ﬂJ;a‘(n)[a+6(l a)or,(n)]

[K(m)R e + Ry K1)

+ 647 a(l-a)[af (M1, +2R K(n)] Ry
+1242 (1-a)? ol (m)|el (m) Iy
+3R K(n)] Ry . @

This now completes our analysis of the MAS algorithm.
It is very difficult to obtain a sufficient condition for the
convergence of K(»n) from (41). We are currently working

on finding the condition, and haopcfully publish the

results some other time.
V. Experimental Results

In order to demonstrate the motivation to the MAS
algorithm and the validity of our derivations in the pre-
vious section, we preseni some experimental results for
which the MAS algorithm is used in the third-order
adaptive predictor. The primary input d(r) is modeled as

an auloregressive process given by

d(ny=4(n}+09d(n-1)-01d(n-2)-02d(n-3),
(42)

where {(n) is a while Gaussian process with zero-mean
and vanance such that the vanance of d(n) is 1. The
results are produced by taking the ensemble averages over
50 independent runs using 5,000 samples.

We [irst confirm our molivation fo the MAS algorithm
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by plotting the trace valucs of the covariance matrix X ()
for the sign, the MAS, and the LMAT algorithms. The
result is depicted 10 Figure 1, where the convergence par-
ameter p is sclected to be 0.007 for cach algorithm.
Curves 1, 2, and 3 represent {7{K(n)} lor the sign, MAS,
LMAT algonthms, respectively. From Figure 1, we can
exactly see that the sign algorithm is normally stable in
spite ol slow convergence, while the LMAT algorithm is
relatively fast convergent despite keen sensitivencss to
stability. The MAS algonthm, however, retains fast con-
vergence as well as robustness as expected.

We next check the validity of our derivations presented
in lhe previous section using the same third-order adapt-
ive prediclor. The parameler u is selected 10 be 0.005 this
time. Figure 2 illustrates the theoretical and empirical
results for the mcan behavior E{H(#n)} of the third-order
adaplive coefficients, and Figure 3 shows those for the
mean-squared behavior of the coefficients by plotiing the

1:a=00 (LMAT)
10 ) 2:a=03
3:a=1.0 (Sign)

1% K{n) }ir d®

# of iteration

Figure . Simulation resvlts of normalized f7{K(n}} in dB 1o
confirm Lhe molivation (o the MAS algorithm.

1 : Theoretical Curve
2 : Simulation Curve
04 —|

E(Hin)

0 1000 2000 3000 4000 5000
# of Iteration

Figure 2. Mean behavior of the cocfficients, E{H{n)).
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normalized f#{K(n)} in 4B. It can be observed that the
theoretical curves agrec with the simulation ones fairly

well.

0 1 : Theoretical Curve
2 : Simulation Curve

10 —

tr{K({n)}inds

T
2000 3000 4000 5000
# of lteration

Figure 3. Mean-squared bebavior of the coeflicients, norma-
lized fr{K{(n)} in dB.

V. Concluding Remarks

In this paper, the MAS algorithm based on the newly
mixed norm error condition was proposed, and its statistical
convergence properiies were analytically investigaled.
When the input signals involved are zero-mean, wide-
sense stationary, and Gaussian, a set of nenlinear evolution
equations that characterizes the mean and mean-squared
behavior of the algorithm was derived. Experimental
resulls were presented in order to confirm our motivation
to the MAS algorithm and (o check the validity of our
derivation. Il was observed that the MAS aigorithm is
able to retain both fast convergene and robustness suc-
cessfully as expected, and that our theoretical results
matche's very well with simulation ones very well.

We are currenlly working on finding the mean-squared
convergence condilion. We shall also examine performances
of the MAS algorithm in various signal environments and

compare with other competing algorithms.
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