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Abstract

In this paper, a modified adaptive sign (MAS) algorithm based on a mixed norm error criterion is proposed. The mixed 
norm error criterion to be minimized is constructed as a combined convex function of the mean-absolute error and the 
mean-absolute error to the third power. A convergence analysis of the MAS algorithm is also presented. Under a set of 
mild assumptions, a set of nonlinear evolution equations that characterizes the statistical mean and mean-squared behavior 
of the algorithm is derived. Computer simulations are carried out to verify the validity of our derivations.

I. Introduction

The adaptive least mean square (LMS) algorithm [1] 

and the sign algorithm [2] have received a great deal of 

attention during the last two decades and are now widely 

used in variety of applications due to there simplicity and 

relatively robust performance. The algorithms attempt to 

minimize the mean-squared and mean-absolute estimation 

errors at each iteration, respectively. Meanwhile, the adaptive 

filtering algorithms that are based on high order error 

power (HOEP) conditions [3]-[기 have been proposed and 

their performances have been investigated. Despite their 

potential advantages, these HOEP algorithms are much 

less popular comparing to the LMS and sign algorithms 

in practice since they can be very sensitive to the stability.

The paper by Walach and Widrow [3] seems to be the 

first one dealing with the HOEP conditions in the stoch

astic gradient adaptive signal processing. They presented 

convergence analyses of the adaptive least mean fourth 

(LMF) algorithm and its family. The performance of the 

LMF algorithm is then compared with that of the LMS 

algorithm for different plant noise densities in the system 

identification mode. By evaluating the ratio 

between the misadjustment of the LMS algorithm and 

that of the LMF algorithm, it was 아｝own that the LMF 

algorithm has substantially less noises in the filter 

coefficients than the conventional LMS algorithm for the 

same speed of convergence, except the case when the 

plant measurement noise of the unknown system has a 

Gaussian distribution. The necessary condition for the 

convergence of the mean and mean-squared behavior of 

the LMF algorithm was also derived. The results in [3|, 

however, are somewhat restrictive due to the employment 

of the wild assumption that the filter coefficients are 

already close to the optimal values.

Douglas and Meng [4) examined a family of adaptive 

algorithms based on general error criteria (or non- 

mean-square error criteria) for which the error function 

to be minimized was modeled as an arbitrary memoryless 

odd-symmetric nonlinear function. It was shown that, in 

the system identification mode, using an error criterion 

optimized for the plant noise density can significantly 

improved the overall performance and reduce the fluctua

tions in 나】。coefficient estimates. Pei and Tseng [5] also 

investigated 나此 performances of the HOEP criteria for 

adaptive FIR filters, and several important observations 

were made. They 아｝owed that the HOEP criteria yield the 

same optimum solution for any high order power when 

the input signals are Gaussian processes. It was also 

아iowd that the sign algorithm is preferred when the 

signals are corrupted by an impulsive noise.

Kim, et al. |6], presented a convergence analysis of the 

least mean-absolute 다lird (LM AT) algorithm by deriving 

equations to characterize the statistical mean and mean- 
squared behavior of the algorithm. They also investigated 

the steady-state responses of the LMAT algorithm and 

compared the performance of the LMAT algorithm with 

that of the LMS algorithm [7], It was shown that the 

LMAT algorithm is able to converge faster than the LMS 

algorithm in many practical situations.
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More recently, the mixed norm based adaptive algorithms 

have been introduced in order to achieve the combined 

benefits of different error norm criteria. Chamber, et al. 

[8] proposed the least mean mixed norm (LMMN) adaptive 

algorithm that combines the LMS and the LMF 

algorithms. A mixing parameter is used to control the 

proportions of the two error norms. The LMMN algorithm 

shows faster initial convergence than the LMF algorithm, 

and has less misadjustment than the LMS algorithm. 

They also investigated the convergence and sleady-state 

properties of the algorithm in [이, and confirmed their 

observations by computer simulations.

Chamber and Avlonitis [10] also proposed another 

mixed norm adaptive algorithm that is suitable for system 

identification modes. The algori나im combines, this time, 

the LMS and the sign algorithms. It was shown that the 

proposed algorithm is robust to the presence of signifi

cant impulsive noise in the desired response oi' the filter, 

while maintaining good accuracy in the steady-state.

In this paper, a new adaptive algorithm, called the 

modified adaptive sign (MAS) algorithm, is proposed by 

combining 나le sign and the LMAT algorithm. The mixed 

norm error criterion to be minimized is constructed as a 

combined convex function of the mean-absolute error and 

the mean-abs이ute error to the third power. Both error 

functions are the perfect convex functions with respect to 

the filter coefficient vector, and therefore the MAS algorithm 

does not have local minima. A statistical convergence 

analysis of the MAS algorithm is also presented. Under a 

set of mild assumptions, a set of nonlinear evolution 

equations that characterizes the statistical mean and 

mean-squared behavior of the MAS algorithm is derived. 

Computer simulations are carried out to verify the val

idity of our derivations.

The MAS algorithm basically makes use of the fact 

that the sign algorithm is relatively slow but normally 

stable, while the LMAT algorithm is relatively fast but 

sensitive to the stability. A motivation to the MAS algorithm 

is therefore to retain the fast convergence property of the 

LMAT algorithm and the robustness of the sign algorithm 

simultaneously.

II. Problem Statement

Now, consider the problem of adaptively estimating the 

primary input signal d(n) using the reference input x(n). 

Let H(n) denote the adaptive filter weight vector of size 

N. Define the reference input vector X(n) as

X(〃) = [x(n),x(n-I),--•，旳-N + I)]7, ⑴

where [*] r denotes the transpose of [•]. The Mixed norm 

to be minimized is of the form

(2)

where E{-} denote a statistical expectation of (•} and a G 

[0, 1] is a mixing parameter. Note that, for a being 1 and 

0, equation ⑵ becomes the sign and the LMAT algorithm, 

respectively. It can be readily expected that the perfo

rmance of the MAS algorithm lies intermediate between 

the two algorithms according to the choice of the par

ameter a.

The MAS algorithm update the coefficient vector H(n) 
using

H(히 +1) = H(n) +(씨a + 3(1 - °)决(씨 吨刀{«〃)},

(3)

where 卩 is the adaptive step-size of positive value,

[1 if e(n) > 0
Ng〃伯(〃)} =〈 I +. - (4)

( } [ -1 otherwise,

and e(n) is the estimation error at time n given by

= d(厅) - Hr{n) X어). ⑸

Let Hopt denote the optimal coefficient vector given by

Hop< = Rxx Rdx， (6)

where

% =E{X(")X，(")}, ⑺

and

Rdx = E\d{n)X(n)\. ⑻

Also, define the coefficient misalignment vector K(m) as

V{n)^ H(n}~ Hopt, (9)

and its autocorrelation matrix K(n) as

阳)= e{y(")尸㈣. (10)

Using ⑼ in (3), we get
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丫(刀 + 1) 느 V(n) + 卩 X(〃) g + 3(1 - a)e2 어)] 成찌e(〃)}.

(11)

The optimal estimation error emin (n) is given by

The second and the last expectation on the right-hand 

side (RHS) of (16) can be simplified using the fa이 that 

for an arbitrary Borel function G(-) and jointly Gaussian 

random variables 幻 and x2 [11]

。响 S）= d（끼 -아” . (12)

5（X2 ）｝M스으이控国箜

硏x；｝
(17)

Combining (5), (9), and (12), it follows that
Thus, using (17) in conjunction with Assumption 1, it was 

아}own that [2]

e(w)二 emin (刀)—X『(m) V(n). (13)
(18)

Finally, let

b； (〃) = E*2 (싸

where

and

(14) 印2（，이丫（싸=예,（"）. (19)

歸n=E｛誠”,（싸
Note in (18) that we have made use of the approximation

(15)

(20)
minimumdenote the mean-squared error power and 

mean-squared error power, respectively.

Convergence analysis of the MAS algorithm is very 

complicated due to the existence of the nonlinear and 

high order powered error signal in the coefficient update 

equation. We thus make the following assumptions in or

der to make our analysis mathematically more tractable.

Assumption 1 ：</(«) and X(n) are zero-mean, wide-sense 

stationary, and jointly Gaussian random processes.

Assumption 2： The input pair {d(n), X(n)} at time n is 

independent of {d(n), X(w)} at time R, n^=k.

Also, using (17) in conjunction with Assumption 1 once 

again, we have

= E 徂X(끼/(小沏{@)} | W)]}

m —2 (21)

We have made use of the followings in deriving (21)：

(22)
A direct consequence of Assumption 1 is that the esti

mation error e(n) in (5) is also zero-mean and Gaussian 

when conditioned on the coefficient vector H(n) (or 

equivalently on V(«)). Assumption 2 is the commonly 

employed ^independence assumption "[2] and is valid if 卩 

is chosen to be sufficiently small. One direct consequence 

of Assumption 2 is that H(n) is independent of the input 

pair {</(«), since H(n) depends only on the inputs 

at time n — 1 and before.

ID. Convergence Analysis

Taking the statistical expectation on both sides of (11) 

gives

E[X{n)e(n)\V(n)\ = -Rxx (23)

and the approximation

&*勺川 ） 〃어）｝ 즈，Z （끼 硏卩어）｝ (24)

Note in (23) that we have made use of the independence 

assumption (i.e., Assumption 2) as w이 1 as the ortho
gonality principle.

Therefore, using (18) and (21) in (16), we have the 

mean behavior for the coefficient misalignment vector of 

the MAS algorithm as

E{V(n + 1)} = E{V(n)} + 卩a E{X(끼 sign{e(n)}}

+ 3^(1 - a)E^X{n)e2 (〃) sig〃{知?)} }.
即5｝ = 卜씨弓느 xx
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沁g一 6//(l - a) E{W)}， (25)

where IN denotes the NX N identity matrix.

From (25), it is easy to show that the mean behavior of 

the coefficient misalignment vector converges to

the zero vector (or equivalently, E{ H(n)} is convergent to 

H어} if the convergence parameter “ is selected to be

々W
f---------------------————， "， (26) 

where 사期 represents the maximum eigenvalue of the 

matrix RXx> Notice, unfortunately, that there exist the 

time-varying functions 必(w) and ae (w) in the upper 

bound of the condition for “ as was the cases of the 

LMF and 나le LMAT algorithms [긔, [6]. Since aj (n) can 

be often large at the beginning of adaptation processes, 

we see that the convergence of the MAS algorithm may 

still depend on the choice of initial conditions. Unlike the 

LMF and the LMAT algorithms, however, the upper 

bound for 卩 of the MAS algorithm contains these 

time-varying functions in both the numerator and the 

denominator, the risk can be significantly reduced according 

to the choice of the mixing parameter a.

We next derive an expression for the mean-squared 
estimation error (n). employing (13) in (14) and using 

Assumption 2, it follows

-2E{尸(心顷响 (싸

= 4m+"{K(")，Rxx}'

(w).

Finally, we need an expression for K(n) to complete 

the analysis. Substituting (11) in (10) leads to

K(히 +1) — K(끼 + 卩2 a。Rxx

+ V(n)XT(n)sign{e(n)}]

+ X(n)Vr(n)sign{e(n)}]

+ 3月(1 一a) y(n)XT(n)e2 (〃) $伽{雄)}]

+算(1 - a) 耳 X(n) VT(n)e2 (끼sign{e(n)}^

+ 6/Fa(l - a) X(ri)XT(n) e2 (씨

+ 沱(1 - a)2 E[ X(n) XT{n)/ (n) ] (31)

We make use of the followings to simplify (31)：

r(n) Xr (w) sign\e(n)\ ] « K{n) ,(32)

E[ V{n)XT{n)e\n)sign{e{n)\^

수 —2 K(끼 Rxx ,

耳 X(n)VT(n)e2(n)sign{e(n)} j

“辱(心5(心

(34)

(35)

where ^min is obtained by using (12) in (15) so that

Sm危 E {d 2 (싸 - /板 , (28)

and by Assumption 2 as well as the orthogonality prin

ciple,

E{尸(")X(")%_(")} =0, (29)

and

耳 X(«)Kr(W)e2(»)]

a (w) IN +2 Rxx K(")] Rxx， 

and

e[ (”) e" (씨

a 3 cr； (") [b： (〃) /jv + 3 K(씨 Rxx

(36)

(37)

E{尸 (") X(") X ” (") r(싸 "r{K(”) /J*  } . (30)

Here, K(n) is defined in (10), and tr{-} denotes the trace 

of {•}. Notice from (27) that if K(n) converges, so does 以

In (32) through (37), we have made use of the following 

approximations as well as the approximation in (20)：
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V(n)VT(h^ 厦上(刀)X0), (38)

E {애, (싸 S("), (39)

and

E{이，，(")Lx

« cr； (n) K(히、) Rxx， (4。)

Therefore, combining (32) through (37) with (31), we ob 

tain the expression for the mean-squared behavior of the 

coefficients of the MAS algorithm as

K(" + l) = %)-2〃2 Rxx

矗”质一"中씨 

by plotting the trace values of the covariance matrix K(n) 

for the sign, the MAS, and the LMAT algorithms. The 

result is depicted in Figure 1, where the convergence par

ameter 卩 is selected to be 0.007 for each algorithm. 

Curves 1, 2, and 3 represent tr{K(n)} for the sign, MAS, 

LMAT algorithms, respectively. From Figure 1, we can 

exactly see that the sign algorithm is nonnally stable in 

spite of slow convergence, while the LMAT algorithm is 

relatively fast convergent despite keen sensitiveness to 

stability. The MAS algorithm, however, retains fast con

vergence as well as robustness as expected.

We next check the validity of our derivations presented 

in the previous section using the same third-order adapt

ive predictor. The parameter 卩 is selected to be 0.005 this 

time. Figure 2 illustrates the theoretical and empirical 

res니ts for the mean behavior E{H(n)) of the third-order 

adaptive coefficients, and Figure 3 shows those for the 

mean-squared behavior of the coefficients by plotting the

[K(〃)R*+Ra  K(〃)]

+ W a(l-이+2%*  K㈣S

+ 12p2 (1-a)2

+ 37?欣 K(씨 • (41)

This now completes our analysis of the MAS algorithm. 

It is very difficult to obtain a sufficient condition for the 

convergence of K(h) from (41). We are currently working 

on finding the condition, and hopefully publish the 

results some other time.

띰
 g
 (
§
 M

IV. Experimental Results
1. Simulation remits of normalized in dB to

confirm the motivation to the MAS algorithm.

In order to demonstrate the motivation to the MAS 

algorithm and the validity of our derivations in the pre
vious section, we present some experimental results for 

which the MAS algorithm is used in the third-order 

adaptive predictor. The primary input d(n) is modeled as 

an autoregressive process given by

d(n) = <(w) + 0.9 J(n-l)-0.1 -2)-0.2 - 3),

(42)

where f(«) is a white Gaussian process with zero-mean 

and variance such that the variance of d(n) is 1. The 

results are produced by taking the ensemble averages over 

50 independent runs using 5,000 samples.
We first confirm our motivation to the MAS algorithm

((
둪
 )
山

Figure 2. Mean behavior of the coefficients,
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normalized tr{K(n)} in dB. It can be observed that the 

theoretical curves agree with the simulation ones fairly 

well.

Figure 3. Mean-squared behavior of the coefficients, norma
lized in dB.

V. Concluding Remarks

In this paper, the MAS algorithm based on the newly 

mixed norm error condition was proposed, and its statistical 

convergence properties were analytically investigated. 

When the input signals involved are zero-mean, wide- 

sense stationary, and Gaussian, a set of nonlinear evolution 

equations that characterizes the mean and mean-squared 

behavior of the algorithm was derived. Experimental 

results were presented in order to confirm our motivation 

to the MAS algorithm and to check the validity of our 

derivation. It was observed that the MAS algorithm is 

able to retain both fast convergene and robustness suc

cessfully as expected, and that our theoretical results 

matche's very well with simulation ones very well.

We are currently working on finding the mean-squared 

convergence condition. We shall also examine performances 

of the MAS algorithm in various signal environments and 

compare with other competing algorithms.
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