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Abstract

Zero-Crossings with Peak Amplitudes (ZCPA) model motivated by human auditory periphery was proposed to extract 

reliable features from speech signals even in noisj environments for robust speech recognition. In this paper, some practical 
considerations for digital hardware implementations of the ZCPA model are addressed and evaluated for recognition of 
speech corrupted by several real world noises as well as white Gaussian noise. Infinite impose response (HR) filters which 
constitute the cochlear filterbank of the ZCPA are replaced by hamming bandpass filters of which frequency responses are 
less similar to biological neural tuning curves. Experimental results demonstrate that the detailed frequency response of the 
cochlear filters are not critical to the performance. Also, the sensitivity of the model output to the variations in microphone 

gain is investigated, and results in good reliability of the ZCPA model.

I. Introduction

Human auditory system is robust to background noise, 

and there have been many researches devoted to modeling 

functional roles of the peripheral auditory systems for 

robust front-ends of speech recognition systems in noisy 

environments [1, 2, 3, 4, 5, 6]. Although computational 

auditory models have been shown to outperform conven­

tional signal processing techniques, modeling peripheral 

auditory systems is still a difficult problem since it requires 

an interdisciplinary research including physiology, psycho­

acoustics, physics, electrical engineering, etc., and since 

little is known about the exact mechanism of the auditory 

periphery for mathematical construction of the model. 

Also, most auditory modeling researches heavily rely on 

experiments to make the output of computational model 

coincide with the biological observations, and analytic 

treatments are intractable since they usually involve 

multistage nonlinear transformations. Further, auditory 

models require careful determination of a lot of free 

parameters which should be determined by trial-ai)d-error 

methods, and require much computation time, which 

make it difficult to be used wid이y in speech recognition 

systems.

A simple and efficient auditory model, Zero-Crossings 

with Peak Amplitudes (ZCPA) model, was proposed as a 

robust front-end for speech recognition systems in noisy 

environments |7, 8], The ZCPA is a simplified auditory 

model and the computational complexity is much less 

severe than other auditory models, and was shown to 

outperform both linear predictive coding (LPC) cepstrum 

and the ensemble interval histogram (EIH) model when 

speech is corrupted by white Gaussian noise. In this 

paper some practical considerations for digital hardware 

implementations of the ZCPA model are addressed, and 

evaluated for recognition of speech data corrupted by 

several real world noises as well as white Gaussian noise.

II. ZCPA Analysis

The ZCPA model consists of a bank of bandpass 

cochlear filters and nonlinear stages at the output of each 

cochlear filter. Fig. 1 represents the block diagram of the 

ZCPA analysis.

The cochlear filterbank represents frequency selectivity 

at various locations along a basilar membrane in the 

cochlea, and was implemented with Kates' traveling wave 

filters without adaptive feedback mechanism [7, 8, 9]. 

Period histogram and interval histogram of firing patterns 

of auditory nerve fibers reveal that there is a high degree of 

phase locking in auditory nerve fibers, that is, auditory 

nerve fibers tend to fire in synchrony with the stimulus 

[10, 11, 12]. In the ZCPA model, a synchronous neural 

firing is simulated as the upward-going zero-crossing 

event of the signal at the output of each bandpass filter, 
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and the inverse of time interval between adjacent neural 

firings is represented as a frequency histogram. Further, 

each peak amplitude between successive zero-crossings is 

detected, and this peak amplitude is used as a nonlinear 

weighting factor to a frequency bin to simulate the 

relationship between the stimulus intensity and the degree 

of phase-locking of auditory nerve fibers. The histograms 

across all filter channels are combined to represent output 

of the auditory model. Thus frequency information of the 

signal is obtained by zero-crossing intervals, and intensity 

information is also incorporated by a peak detector fol­

lowed by a saturating nonlinearity.

Figure 1. Block diagram of the zero-crossings with peak 잔mpli- 
tudes (ZCPA) model.

Let us denote the output signal of the 妇h bandpass 

filter by xk (n) and the frame of xk(n) at time m by 独3；沏， 

which is obtained as

xk(w;m)-xk(n)wk(ni — w), k- 1，.…,Neh (1)

where wk(n) is a window function of finite length, and Nch 

is the number of channels, i.e., the number of cochlear filters. 
Further, let us denote Zk by the number of upward-going 

zero-crossings of xk{n； m), and Pki by the peak amplitude 

between the Z-th and (l + l)-th zero-crossings of xk{n ； m), 

respectively. Then the output of the ZCPA at time m is 

represented as

贝紹/) = £ 访g(F诚，i Mz'MN, (2)
k = 1 i = I

where N is the number of frequency bins,力 is the index 

of the frequency bin computed using the Z-th and (Z +1 )-th 

zero crossings, and <5订 is the Kronecker delta. g( ) is a 

monotonic function which implements the relation between 

the stimulus intensity and the degree of phase-locking of 

auditory nerve fibers. The length of window function,以、 

is determined as 10/& to capture about 10 periods of the 

signal when the signal is pure sinusoid of frequency, Fk, 

where Fk is the characteristic frequency of the Eh chan­

nel |5].

Thus, the window lengths become large for low fre­

quencies, and small for high frequencies. As a result, fre­

quency resol니ions are finer while time resolutions are 

poorer at lower frequencies, and vice versa at higher 

frequencies. This property is consistent with psychoacoustic 

observations.

The EIH model utilizes level-crossings for frequency 

information [4]. However, unlike the ZCPA model, mul­

tiple level-crossing detectors with different level values are 

utilized both for fieq나ency and intensity information in 

the El니 model. In implementing the EIH, one has to 

determine several parameters such as the number of levels 

and level values, which are extremely critical for reliable 

performance. However, there is no elegant method to 

determine these values, except by trial-and-error. The 

utilization of zero-crossings in frequency estimation 

makes the ZCPA model free from unknown parameters 

associated with the level, more efficient for calculations, 
and more robust to noise than the EIH. model. Let us 

consider the following signal

x(t) = As cos(a)st +0) -A-Anv(t) (3)

where v(t) is a bandlimited white Gaussian noise with a 

rectangular power spectrum of bandwidth W [rad/sec] 

and has zero mean and unit variance. Let us suppose that 

x(t) is filtered by an ideal bandpass filter of bandwidth B, 

and the output of the bandpass filter contains a sinus­

oidal signal plus bandpass filtered noise. If rn denotes the 

perturbation in the level-crossing positions introduced by 

the noise, the variance of the interval perturbations is 

obtained as

a2^E{\r„-rn + [\2}

= N으 ( An \2 --------!------- (4)
w〔60 丿 1-("4,)2

where Ai denotes a crossing level value [7, 8]. The vari­

ance of the time interval perturbations between two 

adjacent level-crossings has a minimum value for A/ = 0. 

This implies that higher level values result in higher sensi­
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tivity in the estimated intervals and frequencies. The 

estimated spectra based on zero-crossings have a tendency 

to enhance the dominant signal component and also to 

suppress adjacent noise components. This property can be 

explained by the dominant frequency principle [13] and 

contributes to the noise-robustness of the ZCPA model. 

The operation of the ZCPA is significantly different from 

conventional signal processing techniques such as FFT in 

that the local frequency and intensity information of one 

period of the signal is measured and then accumulated to 

obtain the output.

1H. Data Base and Recognition Systems

3.1 Data Base and Noise Materia

In consideration of practical applications of automatic 

speech recognition, 50 Korean words which seem to be 

necessary for control of electric home appliances including 

TV and VCR were 아The utterances from 16 male 

speakers were sampled at 11. 025 kHz sampling rate with 

12 bit precision via SONY ECM-220T condenser micro­

phone. The data base has relatively low quality in con­

sideration of the cost and speed of hardware, which is 

under development [14]. 900 tokens of 9 speakers were 

used as training of recognizers, and 1050 tokens of the 

other speakers as test evaluations.

There are many kinds of noises in real environments 

which are not stationary in general, and performance 

evaluation in real situations may be very important for 

practical applications of ASR. Factory noise, military 

operations room noise, and car noise, contained in 

NOISEX-92 CD ROMS [15], were added to the lest data 

sets at various SNRs for test evaluations in real 

situations. The NOISEX-92 database is produced by the 

NATO research study group on speech processing in 

liaison with the ESPRIT SAM (Speech Assessment Meth­

odology) project laboratories, and the noises are from the 

NATO-RSG시0 noise database [16].

The NATO-RSG니 0 database, which is aimed at the 

evaluation of automatic speech recognition systems and 

speech communication channels in military situations, 

contains some examples of representative noise sources 

such as jet-plane, helicopter, wheel carrier, tank, and 

command room. Properties of real-world noises used in 

this paper are described in Table 1, and Fig, 2 shows 

spectrogram of each noise material. There are periodic 

sounds of impingement of machinery in both factory 

noise and military operations room noise. Also, speech 

noise is contained in the military operations room noise, 

which makes the problem more difficult. Most of energy 

of car noise is concentrated at low frequencies due to 

mechanical characteristics, as shown in Fig. 2 (c). In a 

car, noise comes from many factors such as the engine, 

the fans, transmission, tire-surface interaction, and the 

aerodynamic effects. What makes the actual problem 

more complicated is the situation of a car. That is, noise 

can be generated by the passenger and audio equipment 

besides car itself, and whether the window is opened or 

not may play an important factor. It was found that the 

SNR of speech signals recorded in a passenger car with a 

microphone mounted on the dashboard in front of 

speaker could drop below -5 dB while the car was in 

movement with closed windows and without fan [17].

Table 1. Description of real-world noise used in this paper.

Source Description
Factory Noise Car floor production, 

electrical welding
Military Operations
Room Noise

Operations room of 
destroyer

Car Noise Volvo-340, 120 km/h, 
4th gear, asphalt road

TIME
(a) Factory nois£L

TIME (attci
(b) Military operations room noise

Figure 2. Spectrogram of (a) factory noise, (b) military opera­
tions room noise, and (c) car noise.
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3.2 Speech Recognition Systems

In this paper, both discrete hidden Markov model 

(HMM) speech recognizer and multilayer perceptron 

(MLP) recognizer preceded by trace-segmentation [18| are 

used to investigate the recognizer-independent reliability 

of features extractions.

Word-level HMM construction is performed since the 

task is isolated word recognition. Each 너MM models a 

particular word with the left-to-right model. In 나le 

left-to-right model, each state has only two transitions, 

one is going back to its own state and the other is going 

to the next state. The number of states of the HMM is 

set to be either five for one-syllabic word or eight for 

multi-syllabic word. Each HMM is iteratively trained 

with Baum-W이ch algorithm based on maximum likeli­

hood estimation (MLE). The codebook is trained with 

training data in iterative manner |19], and the size of 

codebook is set to be 256.

There have been a lot of schemes proposed to apply 

neural networks to speech recognition, and static 

approach utilizing an MLP showed better performance 

than dynamic approach at least for isolated word recog­

nition tasks [20, 21]. However, the problem of time-vari­

ation of speech shcmld be handled before classification by 

static neural network, since the number of input neurons 

is fixed whereas the length of speech signal varies at each 

pronunciation. Trace-segmentation algorithm [18] is a 

good candidate for normalization of time scale without 

serious computation time. For each isolated word cumu­

lative distances of input features are calculated at each 

frame, and an overall trace of the feature is then divided 

into (TV—I), representing equivalent am。나nls of feature 

changes between each normalized time interval. New in­

put features may be formed by interpolation to provide 

the equivalent amount of change between adjacent time 

frames. This simple time normalization procedure reduces 

redundancies of speech period, especially for steady 

long-pronounced vowels. MLP is trained by using error 

back propagation algorithm [22] with new input features 

passed through trace-segmentation, where each outfit 

neuron indicates a particular word. Thus, the number of 

output neurons is same as the number of vocabulary 

words. The number of hidden neurons is twice that of 

output neurons, and the number of input neuron is the 

normalized time frames, N, which is 64, multiplied by the 

number of components of a feature vector at one time 

frame.

IV. Practical Consi ierations for Digital Hard­
ware Im 미 ementations

There exists a lot of stand-alone applications of auto­

matic speech recognition technology in which the whole 

platforms such as workstations and personal compters 

cannot be used. Therefore it is necessary to develop 

stand-alone hardware such as ASICs (Application Specific 

Integrated Circuits), and several factors of the auditory 

model sho나Id be modified and optimized. Also, even 

though the ZCPA is a simplified auditory mod이 and 

the computational complexity is much less severe than 

other auditory models, the required computation time is 

still greater than conventional feature extraction algorithms.

Thus, several factors of the developed auditory model 

should be considered for efficient digital hardware 

implementations, which is under development |14|.

4.1 Choice of Cochlear Filters
Both the number of bandpass filters and that of fre­

quency bins are set to 16, since it is more effective to use 

powers of two as the number of parameters for digital 

hardware implementations. Frequency range between 1.5 

bark and 17.5 bark is divided into 16 frequency bins 

equally spaced by one bark according to the critical-band 

rate |23].

For cochlear filters, it is recommended to use finite 

impulse response (FIR) filters than infinite impulse 

response (HR) filters for digital hardware implementations 

because roundoff noise and coefficients quantization 

errors are much less severe in FIR filters than in HR 

filters, and stability of HR filters should be carefully con­

sidered. In [7], cochlear filters of the ZCPA were 

implemented with Kates' traveling wave (TW) filters. Fig. 

3 shows frequency response of cochlear filterbank 

implemented with Kates' TW filters [9]. Kates*  traveling 
wave filter sections are aclu시ly HR filters, and these HR 

filters are cascaded by the number of frequency bands. 

Thus it is not profitable for digit시 hardware if only 

fixed-point calculations are available, and it is necessary 

to design the cochlear filterbank with FIR filters.

Frequency response of filterbank consists of 16 hamming 

bandpass filters (FIR filters), which are designed by win­

dow method, is shown in Fig. 4. Even though the desired 

filter shape is not aimed to follow biological neural 

tuning curve in detail, the center frequencies of filterbank 

are determined between 200 Hz and 4000 Hz by the fre­

quency-position relationship on the basilar membrane

|24], which is represented as
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Figure 3. Frequency response of cochear filterbank imple­
mented with TW filters.

Figure 4. Frequency response of cochlear filterbank imple­
mented with FIR filters.

(a) Results of HMM recognizer

Table 2. Comparison of recognition rate (%) of the ZCPA 
obtained using the TW filters and FIR filters.
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7=4 (1(严一1) (5)

where F is frequency in Hz, x is the normalized distance 

along the basilar membrane with value from 0 to 1. The 

appropriate constants for the human cochlea, A = 165.4 

and(2 = 2.1, are used in this paper. And the bandwidths 

are set to be proportional to the equivalent rectangular 

bandwidth (ERB) [25]. ERB is the bandwidth of an liypo- 

thetical rectangular filter, and is represented as the quad­

ratic fit as a function of the center frequency of the audi­

tory filter

ERB = 6.23F2 +93.39F+28.52 ⑹

where F is frequency in kHz [25], Further, the maximum 

number of tabs is limited to 100 for appropriate level of 

hardware implementations, and the characteristics of sev­

eral lower frequency channels are sacrificed by the limi­

tation as shown in Fig. 4.

Table 2 summarizes recognition rates of the ZCPA 

obtained using the TW filters and FIR filters. Resets 

of HMM recognizer are shown in (a), and those of 

MLP recognizer in (b). WGN, FAC, MOP, and CAR 

denote white Gaussian noise, factory noise, military 

operations room noise, and car noise, respectively. Even 

though TW filters are designed to mimic neural tuning 

curve shapes in detail, recognition rate obtained by 

hamming filters is higher than that obtained by TW 

filters regardless of the types of noise and SNR, on the 

contrary. As a result, the shape of the filter does not seem 

to be critical for recognition performance, which is in 

agreement with the result of [4]. And the critical part of 

the auditory model is the neural transduction stage. Thus 

it is sufficient to use FIR filterbank if one considers digi­

tal hardware implementations of the ZCPA. Moreover, 

recognition rate of MLP system is much higher than that 

of HMM system. The reason may be as follows. HMM is 

trained with maximum likelihood estimation (MLE) by 

which expectation value for samples of its own class given 

the model is maximized. If the topology and assumptions 

associated with the model are correct, the resulting recog­

nition system is optimal classifier. However, there is no 

guarantee that the model is correct. Further, the first- 

order Markov assumption may not fit for the real 

situations. On the contrary, the MLP recognizer is 

trained with all samples of all classes, so that the decision 

boundaries between classes are formed as hyperplanes.
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Since the training scheme of MLP system is based on 

decision boundary between all classes, the classification 

capability of MLP is much higher than HMM. Further, 

all contextual cues are included in the input pattern in 

MLP recognition system, since the wh이e word is con­

sidered as one pattern.

4.2 Sensitivity to Input Gain
Empirically determined saturating nonlinearity of the 

ZCPA, g() in Eq.(2), is Iog(l +ax), where x denote the 

peak amplitude and a, which is set to 20, determines the 

slope of the nonlinear function. Unlike conventional fea­

ture extraction algorithms such as LPC cepstrum or 

MFCC, the effect of changes in microphone inp니 gain to 
the output of the ZCPA is not additive. Actually, the 

input gain term is appeared to be additive al cQ of 

MFCC. However, the effect of variations in microphone 

input gain to the output of the ZCPA depends on the 

quantity, ax. If ax is sufficiently large, then log(l +ax) ~ 

log(a) -l-log(r) and the gain term in the input signal is 

separated as an additive term at model output. However, 

if x is small such that the above approximation does not 

hold, the gain term is not additive any more. Since final 

value of each frequency bin is computed by considering 

signals of several neighboring channels which are 

associated with the frequency of that bin, it can not be 

said that the effect of gain term is additive. Actual 

investigations of the output of the model for speech 

signals reveal the fact that the gain term is not additive at 

the output of the model. Thus, there is no guarantee that 

the model is not sensitive to the input gain. If so, the per­

formance of the model may not be independent of the 

volume of the microphone or distance from microphone 

to speakers, and the reliability of the model may not be 

maintained. One solution is to normalize amplitude of the 

input signa! by the maximum amplitude of the signal, for 

example. However, the whole utterance should be stored 

in memory for normalization, and it is almost impossible 

for practical applications where real-time processing is 

required.

Thus it is necessary to investigate the performance of 

the model as the microphone input gain is varied. On the 

other hand, this problem is concerned with the slope of 

saturating nonlinearity of the ZCPA model since the 

change in input gain can be represented as the slope of 

saturating nonlinearity. Fig. 5 summarizes recognition 

rates of the ZCPA as a is varied under several types of 

noisy conditions, where HMM recognition system is used. 

If one suppose that a is set to 20, then the condition
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by a quarter. And the increased microphone input gain 

by four times can be equal to the condition of a = 80. As 

shown in Fig. 5, it can be hardly said that the performance 

of the ZCPA is sensitive to the slope of saturating 

nonlinearity, a Thus, the output of the ZCPA is not sen­

sitive to input gain variations.
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Figure 5. The effect of slope of nonlinear function in the ZCPA 
under various types of noisy conditions. HMM recog­
nition system is used, and nonlinear function of the 
ZCPA used in this experiment is log(l + ALPHA#).

V. Conclusions

The ZCPA model based on human 이서itory periphery 

was proposed as a robust front-end for speech recog­

nition systems in noisy environments. Although the 

ZCPA model is computationally efficient compared with 

other auditory models, it still requires much computation 

time than conventional speech processing techniques. 

Thus it is recommended to implement the developed audi­

tory model with digital hardwares such as ASICs or digi­

tal signal processors for practical applications of ASR in 

noisy environments, and two factors of the ZCPA model 

are addressed in this paper. Fir아, HR filters which consti­

tute the cochlear filterbank are replaced by FIR filters, 

which have less similarities to biolo흥ic지 observations, to 

make it easy to implement with digital hardwares. Exper­

imental results demonstrate that the detailed frequency 

response of the cochlear filters are not critical to the per­

formance. Second, the sensitivity of the model output to 

the variations in microphone input gain is investigated in 

consideration of real-time processing of speech signals, 

and results in good reliability of the model even when the 

input gain is increased by 16 times as large. In most of 

evaluations, several real-world noises as well as white 

Gaussian noise are considered, and two recognizers are 

used to investigate the recognizer-independent reliability 

of the features. The MLP classifier 아lows much better 

recognition rates than the discrete HMM classifier in all 

cases.
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