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Abstract

Zero-Crossings with Pcak Amplitudes (ZCPA} model motivated by human audifory periphery was proposed to extract

reliable features from speech signals cven in noisy environments {or robust speech recognition. In this paper, some praclical

considerations for digital hardware implementations of the ZCPA model arc addressed and evalualed for recognition of

specch corrupted by several real world noiscs as well as white Gaussian naise. Infinite impulse response (LR} filters which

constitute the cochlear filterbank of the ZCPA we replaced by hamming bandpass filters of which frequency responses are

less similar to biological ncural tuning curves. Experimental results demonstrate that the detailed frequency response of the
cochlear filters are not critical to the performance. Also. the sensitivity of the model oulpu! 1o the variations in microphone

gain is investigated, and results in good reliability of the ZCPA model.

I . Introduction

Human auditory syslem is robust to background noisc,
and there have been many researches devoted o odeling
functional roles of the periphcral auditory systems for
robust front-ends of speech recognition systems m noisy
cnvironments [1, 2, 3, 4, 5, 6]. Allhough computational
auditory models have been shown (o outperform conven-
tional signal processing techniques, modeling peripheral
auditory systems is still a difficult problem since il requircs
an interdisciplinary research including physiotogy, psycho-
acoustics, physics, electrical engincering, c¢tc.. and since
little is known about the cxact mechanism of the auditory
periphery for mathematical construction ol the model.
Also, most auditory modeling rescarches heavily rely on
experiments to make the oulput of computational model
coincide with the biological ohservations, and analylic
lrealmenis are intractable since lhey uwsually involve
multistage nonlinear transformations, Further, wuditory
models require careful determination of a lot of [ree
parameters which should be determined by trial-and-error
methods, and requirc much computation time. which
make it difficult to be used widely in speech recognition
syslems.

A simple and efficient audilory model, Zero-Crossings
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with Peak Amplitudes (ZCPA) modcl, was proposed as a
robust front-end for speech recognition systems in noisy
envirenments |7, 8]. The ZCPA is a simplificd auditory
model and the computational complexily is much less
scvere than other auditory models, and was shown to
outperform both lincar predictive coding (L.PC) cepstrum
and the cnsemble interval histogram (EIH) model when
speech is corrupted by white Gaussian noise. In this
paper somc practical considerations for digital hardware
imptementations of the ZCPA model are addressed, and
evaluated for recognition of specch data corrupted by

several real world noises as well as white Gaussian noise.
Il. ZCPA Analysis

The ZCPA model consists of a bank of bandpass
cochlear filters and nonlinear stages at the output of each
cochlear filter. Fig. | rcpresents the block diagram of the
ZCPA analysis.

The cochicar filterbank represents frequency selectivity
at various localions along a basilar membrane in the
cochlea, and was implermented wilth Kates' traveling wave
filters withoul adaptive feedback mechanism [7, 8, 9l
Period histogram and interval hislogram of finng patterns
of auditory nerve fibers reveal that there is a high degree of
phase locking in auditory nerve fibers, that is, auditory
nerve fibers tend to fire in synchrony with the stimulus
{10, t1, 12]. In the ZCPA model, a synchronous neural
firing is simulated as ihe upward-going zero-crossing

evend of the signal at the oulput of cach bandpass filter,



16

and the inverse ol lime interval belween adjacent newral
firtngs is represented as a frequency histogram. Further,
cach peak amplilude belween successive Zero-crossings is
detected, and this peak amplilude i1s used as a nonlinear
weighting [aclor to a frequency bin to simulale the
relationship between the stimulus inlensity and the degree
of phase-locking of auditory nerve fibers. The histograms
across all filter channels are combined (o represent output
of the auditory model. Thus frequency information ol the
signal is obtained by zero-crossing lervals, and inlensity
information is also incorporated by a peak detector fol-

lowed by a saturating nonlincarily.
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Figure |. Block diagram of the zcro-crossings wilh peak ampli-

tudes (ZCPA) model.

Let us denole the oulput signal of the &-th bandpass
filler by x4(#) and Lhe frame of x, (32 at time #2 by 2 (nim),

which is oblained as
x p=x(mw,(m—n), k=1... Now )

where wy (1) is a window function of fimile length, and N,
is the number of channels, i.e., the number of cochkear filters.
Further, let us denole /¢ by the number of upward-going
zero-crossings of xg(#:m), and Py by the peak amplitude
between the £-1h and (£ 4 1)-th zero-crossings of xg{z:m),
respeclively. Then the output of the ZCPA at time m is
represented as

Ny Za—1

ym =Y !gl 0,8 (Pep | < i< N, (2)

where N is the number of frequency bins, f; s the index
of Lhe frequency bin computed using the £-th and (7 ++ 1)-th
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zero crossings, and d;; i1s the Kronecker delta. g( ) is a
monotonic [unction which implements the relation between
the stimulus intensity and the degree of phase-locking of
auditory nerve fibers. The length of window function, Ly,
is determined as HO/F, 1o capture about 10 periods of the
signal when the signal is pure sinusoid of frequency, 7,
where £, is the charactenistic frequency of (he 2-th chan-
nel (5).

Thus, the window lengths hecome large for low ire-
quencics, and small for high frequencies. As a result, fre-
quency resolutions are finer while lime resolutions are
poorer at lower {requencies, and vice versa at higher
frequencics. This property is consistenl with psychoacoustic
obscrvations.

The EIH model ulilizes levelcrossings for frequency
information [4]. However, unlike Lthe ZCPA model, mul-
tple level-crossing detectors with different level values arc
utilized both for frequency and intensily information in
the ETH model. In implementing the EIH, one has to
determine several parameters such as the number of levels
and level values, which are extremely critical for reliable
performance. However, thete 1s no elegant method to
determine these values, except by trial-and-error. The
utilization of zcro-crossings in frequency estimation
makes the ZCPA model free from unknown parameters

associated with the level, more efficicnt for calcutations,
and morc robust to noise than the EIH, model. Let us

consider the following signal

x ()= A, coslmst +0)+ A, 0{8) )

where (1) is a bandlimited white Gaussian noise with a
rectangular power spectrum of bandwidlth W (rad/sec]
and has zero mean and unit variance. Lel us suppose that
x(1) is filtered by an idcal bandpass filter of bandwidth B,
and the output of the bandpass filler contains a sinus-
oidal signal plus bandpass filtered noise. If », denoles the
perinrbation in the level-crossing positions introduced by
the noise, the variance of the interval perturbations is

oblained as

ol Ellry—rysrl?)

8, A, )z 1 @

“w G ) TSy

where A; denotes a crossing level value [7, ). The van-
ance of the time inlerval perlurbations between two
adjacent level-crossings has a minimum value for 4;=0.

This implies (hal higher level values result in higher sensi-
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tivity in the estimated intervals and frequencies. The
estimated spectra based on zero-crossings have a tendency
to enhance the dominant signal component and also to
suppress adjacent noise components. This properly can be
explained by the dominant frequency principle [13] and
contributes to the noisc-robustness of the ZCPA model.
The operation of the ZCPA is significantly different from
conventional signal processing techniques such as FFT in
that the local frequency and intensity tnformation of onc
period of the signal is measured and then accumulated to

obtain the outpul.
. Data Base and Recognition Systems

3.1 Data Base and Noise Material

In consideration of practical applications of automatic
specch recognition, 50 Korean words which seem to be
nceessary for control of electric home appliances including
TV and VCR were chosen. The uiterances from 16 male
speakers were sampled at {1. 025 kHz sampling rate with
12 bit precision via SONY ECM-220T condenser micro-
phone. The data base has relatively low quality in con-
sideration of the cost and speed of hardware, which is
under development [14]). 900 tokens of 9 speakers were
used as training of recognizers, and 1050 tokens of the
other speakers as test cvaluations.

There are many kinds of noises in real environments
which are nol stationary in general, and performance
evalvation in real situations may be very important for
practical applications of ASR. Factory noise, mililary
operations room noise, and car noise, contained in
NOISEX-92 CD ROMS [15], were added to the test data
sets al various SNRs for tesl evaluations in real
situations. The NOISEX-92 database is produced by the
NATO research study group on spcech processing in
liaison with the ESPRIT SAM (Speech Assessment Meth-
odology) project laboratonies, and the noises are from the
NATO-RSG-10 noise database [16].

The NATQO-RSG-10 database, which is aimed at the
cvaluation of automatic speech recognition systems and
speech communication channels in milifary situations,
comlains some examples of representative noise sources
such as jet-plane, helicopler, wheel carrier, lank, and
command room. Properties of real-world noises used in
this paper are described in Table |, and Fig. 2 shows
spectrogram of each noise material. There are periodic
sounds of impingemenl of machinery in both factory
noise and military operations room noise. Also, speech

noise is contained in the nulitary operations room noise,
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which makes the problem more difficull. Most of energy
of car noise is concenlrated 21 tow frequencics due to
mecchanical characteristics, as shown in Fig. 2 (¢). In a
car, noise comes from many (actors such as the engine,
the fans, transmission, tire-surface interaction, and the
acrodynamic effects. What makes Lhe actual problem
morc complicated is the situation of a car. That is, noise
(;an bc generated by the passenger and audio cquipment
besides car itself, and whether the window is opened or
nol may play an tmportant factor. 1t was found thal the
SNR of speech signals recorded in a passenger car with a
microphone mounted on the dashboard in fronl of
speaker could drop below -5 dB while the car was in

movement with closed windows and without fan [17].

Table . Description of rcal-world noise used in this paper.

Source | Description

Factory Noise car floor production,

electrical welding

Military  Operations | Operations room of
Room Noise destroyer

Car Noise Volvo-340, 120 km/h,
4th gear, asphalt road

E)
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Figure 2. Spectrogram of {(a)factory noise. (b)military opera-

tions room noise, and (¢) car noise.
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3.2 Speech Recognition Systems

In this paper, both discrete hidden Markov maodel
(HMM)} speech recognizer and multifayer perceptron
(MLP) recognizer preceded by trace-segmentation [13] are
used 1o investigate lthe recognizer-independent reliability
of fcatures extractions.

Word-level HMM construction is performed since the
task is isolated word recognition. Fach 1IMM models a
particular word with the Icft-lo-right model. In the
lefl-lo-right model, each stale has only {wo (ransilions,
onc is going back to ils own slale and the other is going
to the next state. The number of stales of the HMM s
scl 1o be cither five for one-syllable word or cight for
mulli-syllable word. TFach HMM s ileralively trained
with Bawm-Welch algorithm bascd on maximum likeli-
hood estimation (MLE). The codebook is frained with
training dala in iterative manner [19]), and the size of
codebook Is sel lo be 256.

There have been a lot of schemes proposed (0 apply
ncural networks 1o speech  recognilion, and  slalic
approach utilizing an MLP showed beller performance
than dynamic approach at least lor isolated word recog-
nition tasks [20, 21]. However, the problem of tisne-vari-
ation of spoech should be handled before classification by
stalic neural network, since the number of inpul neurons
is fixed whereas the length of speech signal varies al cach
pronunciation. Trace-segmentation algorithm [18] is a
good candidate for normalization of time scale withoul
serious computation time. For cach isolated word cumu-
lative distances of inpul features are calculated at cach
frame, and an overall trace of the fealure is then divided
into {N—1t), representing equivalenl amounts of lcalure
changes between each normalized tlime interval. New in-
pul features may be formed by interpolation o provide
the equivalent amount of change between adjaceni time
frames. This simple time normalization procedure reduccs
redundancics of speech period, especially for steady
Jong-pronounced vowels. MLP is trained by using error
back propagation algorithm [22) with new input features
passed (hrowgh (race-scgmentalion, where each output
ncuron indicates a particular word. Thus, the number of
output ncurons is same as Lthe number of vocabulary
words. The number of hidden neurons is fwice that of
output neurons, and the number of input neuron is the
normalized time framcs, ¥, which is 64, mulliplied by the
number of components of a leature vector al one time

frame.
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[V. Practical Consi lerations for Digital Hard-
ware lmplementations

There exists a lot of stand-alone applications of aulo-
malic speech recognition lechnology in which the whole
platforms such as workstations and personal computers
cannol be used. Therefore it is necessury 1o develop
stand-alone hardware such as ASICs {Applicalion Specific
Integraled Circuils), and scveral lactors of the auditory
model should e moditied and oplimized. Also, cven
though (he ZCPA ts a simplificd audilory model and
the computaltional complexily is much less severe than
other auditory models, the required computation lime is
stll greater than conventional feature extraction algonthms.

Thus, several factors of the developed auditory model
should be considered for  efficient  digital hardware

implementations, which is under development | (4]

4.1 Choice of Cochiear Filters

Both the number ol bandpass fiters and that of fre-
quency bins are sel lo 16, since il is more elfective 1o use
powers ol two as the number of paramelers for digital
hardware implementations. Frequency range belween 1.5
bark amd 17.5 bark is divided into 16 [requency bins
equally spaced by one bark according Lo the critical-band
rate [231.

For cochlear filters, it s recommended to use finile
impubse response (FIR) (idters  than infinite  impulse
response (1TR) filters for digital hardware implementations
becanse roundofl noisc and coeflficients quantization
crrors arc much less severe in FIR filters than in 1IR
filters, and stability of 1IR filters should be carefully con-
sidered. Ia [7). cochlear fillers of the ZCPA were
implemented wilh Kales' (raveling wave (TW) filters. Fig.
3 shows frequency response of cochlear fitterbank
implemented with Kates” TW filters (9). Kales' traveling
wave filter seclions arc actually IR filters, and these 1IR
filters are cascaded by the number of frequency bands.
Thus it is not profilable for digital hardware if only
fixed-point calculations are available, and il is necessary
Lo desigo the cochlear filterbank with FIR filters.

Frequency response of filterbank consists of 16 hamnung
bandpass filters (FIR filters), which are designed by win-
dow method, is shown in Fig. 4. Even though the desired
filter shape 15 not aimed 1o follow biological neural
luning curve in detail, the cenler frequencies of filterbank
are delermined belween 200 Hz and 4000 Hz by the (re-
quency-position rtelationship on the basilar Imcmbranc

|124], which is represenled as
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F=4010"—-1) (5)

where £ is {requency tn Hz, x is the normalized distance
along the basilar membrane with value from 0 to 1. The
appropnale constants for the human cochlea, 4 =165.4
and 2=2.1, are used in this paper. And the bandwidths
are sel lo be proportional to the equivalenl reclangular
bandwidth (ERB) [25]. ERB is the bandwidth of an hypo-
thetical rectangular filter, and is represented as the quad-
ratic fit as a function of the center frequency of the audi-

tory filter

ERB =6.23F? +93.39F +28.52 (6)

where F is frequency in kHz [25]. Further, the maximum
number of tabs is limited to 100 for appropriate level of
hardware implementations, and the characteristics of sev-
cral lower frequency channels are sacrificed by the limi-
tation as shown in Fig. 4.

Table 2 summarizes recognition rates of the ZCPA
oblained using the TW filters and FIR filters. Results
of HMM recognizer are shown in {(a), and those of
MLP recognizer in (b). WGN, FAC, MOP. and CAR
denote white Gaussian noise, factory noise, military
operalions room noisc, and car noise, respectively. Even
though TW filters arc designed to mimic neural toning
curve shapes in detail, recognition ralc obtained by
hamming filters is higher than that obtained by TW
filters regardless of the types of noise and SNR, on the
contrary. As a result, the shape of the filter does not secm
1o be critical for recognition performance, which is in
agroement wilth the result of f4]. And the critical part of
the auditory model is the neural transduciion stage. Thus
it is sufficient to use FIR fillerbank if one considers digi-
tal hardware implementations of the ZCPA. Moreover,
recognition rate of MLP system is much higher than that
of HMM system. The reason may be as foitows. fIMM is
trained with maximum likclihood eslimation (MLE) by
which expectation value for samples of tts own class given
the model 15 maximized. I the topology and assumptions
assoctated with the model are correct, the resulting recog-
nition systcm is optimal classifier. Howcver, there s no
guarantee thalt the model is corrcet. Further, the first-
order Markov assumption may not fit for the rcal
situations, On the contrary, the MLP rccognizer is
trained with all samples of all classes, so that the decision

boundaries between classes are lormed as hyperplanes.
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Since the training schemc of MLP system is based on
decision boundary between all classes, the classification
capability of MLP is much higher than HMM. Further,
all contextual cues are included in the inpul pattern in
MLP recognition system, since the whole word is con-

sidercd as one pattern.

4.2 Sensitivity to Input Gain

Empirically determined saturating nonlincarily of the
ZCPA, g() in Eq.(2), 1s log(! +ax), where x denote the
peak amplitude and o, which is set to 20, determines the
slope of the nonlinear function. Unlike conventional fea-
turc extraction algorithms such as LPC cepstrum or
MFCC., the effect of changes in microphone input gain lo
thc output of the ZCPA is not additive. Actually, the

input gain term is appeared to be addilive at ¢y of

MFCC. However, the effect of varialions in microphone
input gain to the output of the ZCPA depends on the
quantity, ax. If ax is sufficiently large, then log{] +ax) =
log(x) +log(x) and the gain term in the put signal is
separated as an additive term at model output. However,
if x is small such that the above approximation does not
hold, the gain term is not additive any more. Since final
value of each frequency bin is computed by considering
signals of several ncighboning channels which are
associated with the frequency of that bin, it can not be
said that the cflect of gain term is additive. Actual
investigations of the outpul of the model for speech
signals reveal the fact thal the gain term is nol additive at
the output of the modcl. Thus, there is no guarantee that
the model is not sensitive to the input gain. If so, the per-
formance of the model may nol be independent of the
volume ol the microphone or distance from microphone
to spcakers, and the reliability of the model may not be
maintained. One solution is 10 normalize amplitude of the
input signa! by the maximum amplitude of the signal, for
example. Howcever, the whole ulterance should be stored
in memory for normalization, and it is almost impossible
for praclical applications where real-time processing s
required.

Thus it is necessary Lo investigate lhe performance of
the model as the microphone inpit gain is varied. On the
other hand, this problem is concerned with the slope of
salurating nonlinearity of the ZCPA model since ihe
change in inpul gain can be represenled as 1he slope of
saturaling nonlincarity. Fig. 5 summarizes recognition
tates of the ZCPA as a is varied under several types of
noisy conditions, where HMM recognition system is used.

Il one suppose that a is set to 20, then the condition
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when « is 5 is equal to the reduced microphone input gain
by a quarter. And the increased microphone input gain
by lour times can be equal 1o the condition of a«=80. As
shown in Fig. 5, it can be hardly said that the performance
of the ZCPA is sensilive to the slope of saturating
nonlincarity, « Thus, the output of the ZCPA is not sen-

sitive to input gain variations,
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Figure 5. The effect of slope of nonlinear function in the ZCPA
under various types of noisy conditions. HMM recog-
nition system is used, and nonlinear funclion of the
ZCPA used in this experiment is log{l] + ALPHA - x).

V. Conclusions

The ZCPA model based on human auditory periphery
was proposed as a robust front-end for speech recog-
nition systems in noisy environments. Although the
ZCPA model is computationally efficient compared with
other auditory models, it still requires much computation
time than conventional speech processing techniques.
Thus it is recommended to implement the developed audi-
tory model with digital hardwares such as ASICs or digi-
tal signal processors for praclical applicattons of ASR in
noisy environments, and two factors of the ZCPA model
are addressed in this paper. First, 1IR filters which consti-
tute the cochlear filterbank are replaced by FIR filters,
which have less similaritics to biological observations, to
make it easy to implement with digital hardwares. Exper-
imental results demonstrate that the detailed frequency
response of the cochlear filiers are not critical to the per-
formance. Second, the sensitivity of the model oulpul to
the variations in microphone input gatn is investigited in
consideration of real-time processing of speech signals,
and results in good reliability of the model even when the
input gain is increased by 16 limes as large. In most of
evaluations, several real-world noises as well as white
Gaussian noise are considered, and two recognizers are
used to investigate the recognizer-independent rehability
of the features. The MLP classifier shows much better
recognition rates than the discrete HMM classifier in all

Cases.
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