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Abstracts— In recent years, to solve the problem of recycle and reuse of thermosetting composites, and to satisfy the needs
for making of a wide variety of high performance composite products, studies on the development of the long fiber rein-
forced thermoplastic composites (LFRTPC) have been carried out very actively. A major problem in manufacturing LFRTPC
by using pultrusion process is to uniformly and completely impregnate thermoplastic molten resin into the small gaps
between the tightly packed reinforcing fibers because of their high viscosity. Hence, understanding of the flow of molten
resin through fibrous medium is very important to develop novel methods for impregnation. Moreover, it is impossible for us
to design an optimum die without knowing the residence time to impregnate thermoplastic resin into fiber bundle. In response
of this need, we have developed a semi-analytic model for predicting the transverse permeability for non-Newtonian fluid
flow across arrays of aligned fiber bed. The flow behavior of non-Newtonian fluids with strongly shear thinning character
was interpreted by using the finite element method from microscopic viewpoint, and then the transverse mobility, defined as
the ratio of permeability and viscosity, of the cell was estimated by using Darcy's law. We found that the scaled ratio of the
normalized mobilitics of non-Newtonian and Newtonian fluids with respect to the flow rate versus the reduced volume frac-
tion is collapsed on a single line. From this result, the permeability and viscosity values could be separated from the simu-
lation results of non-Newtonian fluids, and a semi-analytic model of modified Darcy's law could be consequently deduced.
The transverse permeability and effective viscosity in this model are expressed only as functions of the fiber volume fraction,
the ultimate volume fraction to capture the packing structures, and power law index.

Keywords: Non-Newtonian fluid, transverse permeability, normalized mobility, modified Darcy law, semi-analytic model,

melt impregnation.

1. Introduction will only increase if efficient and economical processing

technique can be developed. Economically, the ideal method

The use of high performance thermoplastic composites for preparing thermoplastic composites is to impregnate
*Present address: Daelim Research Center, Daegeon 305-345, the fiber reinforcement directly with high viscous molten
Korea resin, and the major challenge is to uniformly and com-
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pletely wet the reinforcement without damaging the fibers.

Thus, one of the most important parameters in compos-
ite manufacturing processes is the permeability of the fi-
brous porous media, because it controls resin penetrating
into the fiber bundles, so strongly influence the impregna-
tion property. Moreover, it is impossible for us to design
the nice die without knowing the residence time to impreg-
nate thermoplastic molten resin into fiber bundle in manu-
facturing of thermoplastic long fiber composites by pultru-
sion process[1].

Newtonian fluid flow through porous media has tradi-
tionally been described by the empirical Darcy's law,
which relates the fluid flow rate to the pressure gradient,
fluid viscosity, and permeability of the porous medium.

K 4ap 1)

Vo
Ho L

in which V, is the superficial velocity, the velocity one ob-
serves on a macroscopic scale, x4, is the viscosity of the
fluid. AP/L is the pressure gradient in the direction of flow
over a characteristic dimension L, K, and is the permeabil-
ity of the porous medium. Currently, permeability is most
often obtained experimentally by measuring the directional
pressure drop-flow rate relationship as a function of volume
fraction. However the experiments are difficult and time
consuming, because there are still no established standard
permeability measurement methods for different fibrous pre-
formed structures. Thus a model for predicting permeability
as a function of preformed microstructure would be useful.
Such a model would lead to understanding of the structural
features that influence the physics of the flow through such
materials, and thus potentially enable one to tailor the mi-
crostructure such that it has both the desired reinforcing ca-
pability and the necessary permeability to fill efficiently.
Several models have been proposed to estimate the value
of the permeability for various porous media. The basic
approach used to develop such models is to determine the
resistance of a viscous fluid to flow in idealized model
geometry, and then back calculate the permeability from
pressure drop-flow rate relationship. Capillary models such
as Kozeny-Carman equation[2,3] are among the earliest
models for predicting the permeability of the porous medi-
um based upon an idealized medium structure, which con-
sists of tortuous capillaries. In this approach, the hydraulic
radius concept was used to relate the capillary dimensions
to the geometric parameters of the porous medium. Its ex-
tension to flow across cylinders was carried out by only
redefining the hydraulic radius[4-6]. Even though this
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model has been used successfully for isotropic granular
media, it does not work well for either axial or transverse
permeability of aligned fibrous media. Bruschke[7] has
shown that the results of the capillary model deviate sig-
nificantly from the numerical solution for the flow across
an aligned bed of cylinders.

A more realistic approach to predict the permeability is
to consider the geometry as an array of aligned cylinders
and to calculate the drag resistance across them. Flow per-
pendicular to regular cylinder arrays has been analyzed
quite extensively by using a number of different mathemat-
ical treatments[8-12]. To obtain a closed form solution, ex-
treme arrangements of the fiber spacing have been con-
sidered. At low porosities when the cylinders are closely
spaced, the lubrication approximation holds and one can
solve for the flow rate and pressure drop relationship
analytically and obtain an expression for the permeability
[13]. For flow perpendicular to cylinders that are widely
spaced or at high porosities, Happel[14] and Kuwabara[15]
both made a solution by use of the cell model concept.
Happel applied a zero shear stress boundary condition at
the outer surface of the cell, whereas Kuwabara applied a
zero vorticity boundary condition. Experiments[16-19] for
the flow through arrays of cylinders at high porosities
show good agreement with these solutions.

But it is not possible to obtain an exact solution when
one extends these models to generalized Newtonian fluids
due to the nonlinear nature of the resulting equations. In
the literature there are no analytical studies available for
flow past cylinder arrays by use of the cell model but
results have been published for flow around spheres. One
approach is to linearize the problem about the Newtonian
point, and thus arrives at a solution which shows good
agreement for slightly shear thinning fluids[20]. Another
study uses a stress and velocity variational principle to ar-
rive at a solution for power law fluids[21]. This approach
has been extended to Ellis and Carreau model fluids[22,
23]. Based on the lubrication approximation, Bafna and
Baird|[24] presented the analytical solution for the flow of
power law fluids in the gap transverse to reinforcing fibers,
and they found the degree of shear thinning of the poly-
meric melt is very significant on the pressure drop during
flow through reinforcement. Lately, Bruschke and Advani
[25] proposed a hybrid model by matching two limiting
solutions of lubrication approach for low porosities and a
cell model solution for high porosities. This model pro-
vided a closed form solution that described flow of shear
thinning fluids past an array of cylinders over the full
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porosity range.

Berdichevsky and Cai[26] proposed an unified model,
which is described as a function of the fiber volume frac-
tion and the ultimate volume fraction to capture the fiber
assembly status, for estimating the permeability of fibrous
media by using self-consistent method. This method con-
siders the flow and energy balance of the insertion of a mi-
cro level physical model into a homogeneous medium.
Papathanasiou and Lee[27] investigated numerically the ef-
fects of micro-structure on the effective transverse per-
meability of unidirectional arrays of cylindrical fibers us-
ing boundary element method. They found that a fully ran-
dom structure exhibits a permeability slightly higher than
a perfect square array for high porosity values for ¢>0.8,
with this trend disappearing for $<0.8 and the averages
coinciding with the result of the perfect square array.

In this study, we use the finite element simulation for
different packing structures to investigate the variation of
the permeability or mobility of viscous Newtonian and
non-Newtonian fluids. From these numerical results, we
also derive the semi-analytic model of modified Darcy's
law for the flow of non-Newtonian fluids through reg-
ularly spaced fiber arrays. The parameters of this model
can be expressed only as a function of power law index,
fiber volume fraction and the ultimate fiber volume frac-
tion to capture the fiber assembly status. And we will utilize
this model equation to optimal design of a crosshead die
for impregnating polymeric melt through the continuous
rovings with multiple monofilaments.

2. Theoretical

In many types of fiber reinforcement, the pore geometry
is very complicated on a micro level. A more realistic ap-
proach to predict the transverse permeability is to consider
the geometry as an array of aligned fibers and calculate the
drag resistance across them.

2.1. Numerical Solution of the Flow Problem

In-line square, staggered square, rectangular, triangular,
and hexagonal arrays are all possible arrangements in an
aligned fiber bed. As consolidation of an aligned fiber bed
proceeds, the fiber will tend to nest in a way that square
arrangements will be changing to staggered square and tri-
angular, and ultimately to a close-packed hexagonal array.
Thus, we tried to calculate the transverse permeability by
using a representative cell as depicted in Fig. 1, which
can describe various types of arrangements only changing
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Fig. 1. Representative cell and transverse flow through idealized
packing structure of parallel aligned fibers.

cell aspect ratio.

Since the flow around the fibers is assumed in a creep-
ing flow regime, inertial effects were ignored. A numerical
flow simulation package, POLYFLOW®, was used to solve
the Stokes equation for the truncated power law fluid flow
through a given fiber packing array. Constant pressure con-
ditions were applied at the inlet and outlet of the cell. No
slip boundary conditions were applied on the fiber surfaces
and symmetry conditions were applied on the remaining sur-
faces. The flow rate was calcnlated for a prescribed pressure
drop and the effective permeability of the cell was estimated
using Darcy's law. The porosity was changed by only chang-
ing the fiber diameter while keeping the given packing ar-
rangement exactly, and numerical simulations were carried
out over a porosity range from 0.05 to 0.95.

To check the periodic condition in the model analysis,
we investigate the consistency of transverse velocity pro-
files at inlet and outlet regions of the two different cell
geometries, such as series cell and unit cell in Fig. 2. The
Picard iterative procedure is employed to solve the equ-
ations and a relative change of less than 0.0001% is utilized
as the convergence criterion.

In order to determine the upper bound for which Stokes
flow results are adequate, the computed linear and non-
linear solution for flow rate and pressure drop across the



Qzysros WEE BAAeE Nze) NREY A9 FAUY AR 143

b)

Fig. 2. Two types of cell geometry of hexagonal array for the check
of symmetry condition: a) series cell b) unit cell.

cell are compared at different Reynolds numbers. Reynolds
number is defined as[28]:

_ pvénd 7
24eH @

where p and d are the density of fluid, and the gap dis-
tance between surfaces of neighborhood fibers. H is
viscosity level parameter and is given by:

s

Flows corresponding to Reynolds numbers between 10° to

10" are simulated for several packing arrays over entire
range of fiber volume fraction.

The results obtained for the flow on the microscopic fib-
er level are then related to the flow on the macroscopic
level that are governed by Darcy's law. The transverse per-
meability of Newtonian fluid is:

[Viaa,
Ky =2

4
A, dP/dy “)

where A; is the cross sectional area of the fluid flow, and
A, is the total cross sectional area of fluid and fibers. V, is
the transverse velocity of fluid and is calculated by

Ny,
,Z[VYdAf:;l Nellem AeVy,ei (5)

However, it is not possible to separate the permeability
and viscosity values from the simulation results for the
non-Newtonian fluid flow, since the fluid viscosity varies
throughout the unit cell depending on the local strain rates.

Therefore, the mobility will be defined as the ratio of the
permeability and viscosity. Darcy's law then becomes

AP
Vo=M— 6
! ©
where M is the mobility of flow in the porous medium.
The mobility of non-Newtonian fluid is calculated by us-
ing Egs. 5 and 6:

[Vyda
M=

A 7
A, dP/dy @

2.2. Semi-analytic Model
The mobility may be nondimensionalized with respect
to the flow rate resulting in a normalized mobility M*,

Ho

M* = g M ®
in which Q denotes the flow rate through the unit cell and
can be substituted for the fiber space (s) multiplied by the
average fluid velocity, Q=sV. The normalized mobility for
a given packing array is not dependent on the flow rate
and pressure drop, but only dependent on the flow beha-
vior index and porosity. If the porous medium has a con-
stant porosity, the normalized mobility of non-Newtonian
fluid with constant flow behavior index has to be kept a
constant value regardless of the changes of the flow rate
and the fiber radius. And also, as n tends to unity, the nor-
malized mobility reduces to the normalized permeability
K,/r7. This means that the mobility is proportional to Q*"r7™
from Eq. 8.

From the above results, the ratio of M* and MZ...onian

M*_ HM/QUe
M’Itlewmnian KY/ rfz

&)

can be expressed as a function with a power of (1-n).
Therefore, if the ratio of M* and M .omn is taken by the
power of 1/(1-n), the scaled ratio of that, (M*/MZuemin )™,
is only a function of fiber volume fraction as follows:

1/(1-n)
M* _
[M:Iflcwwnian J - f(¢) (10)

where ¢ is the fiber volume fraction. The validity of Eq.
10 was confirmed with the numerical simulation results.
Thus, one can separate the effects of the rheology and the
porosity of the medium.

From rearranging Eq. 8 for the mobility
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M=——M* 11)
Ho
is obtained. Substituting Eq. 11 into Eq. 6 for the mac-
roscopic flow after replacement M* with Mo F(G)""
from Eq. 10, we obtain

n= Ky £ (12)
e O

where s equals to N1 +S2)/28¢ 1. S is the cell aspect
ratio as shown in Fig. 1.

Through the solution strategy, the final pressure drop-su-
perficial velocity relationship as a function of the porosity
for non-Newtonian fluids is:

Vo= By AP (13)
M L
where 1 is an effective viscosity which is expressed as
Wo[s"f(¢)"'r7*]. If we introduce the relation between the
ultimate fiber volume fraction ¢,., and the cell aspect ratio
S; for a given fiber arrangement, the permeability of Newto-
nian fluid from Gebart's result[29] is

ol A%

5
2
K=ty 1y (14)

and the effective viscosity is also expressed as:

n-1

= Ho 4\/“’—;“— (K@)~ 1D} 15)

where D; is the diameter of fiber. The ¢,.. and a are con-
stant with 7/2v3, 16/9mV6 for the hexagonal packing ar-
rangement of fiber, respectively.

The above resulting equations from 13 to 15 are satisfied
with the modified Darcy's law for non-Newtonian fluids,
and the parameters of thtse equations can be expressed only
as a function of the fiber volume fraction and the ultimate
fiber volume fraction to capture the fiber assembly status.

3. Results and Discussions

The numerical results of transverse velocity profiles of
a truncated power law fluid flow through a series of cells
are summarized in Table 1. In the series cell, the transverse
velocity profiles at the inlet and outlet regions of IH, FA,

Table 1. The consistency of transverse velocity profile for hexagonal fiber array at a constant pressure gradient. Power law index of 0.5, power
law constant of 10 p, and fiber volume fraction of 0.3 are used

Coordinate [cm] V, [em/s]
X y Series cell Unit cell Series cell Unit cell
1.739¢-03 6.023¢-03 4.1280e-20 4.4023e-06
1.646¢-03 6.023e-03 2.0626¢-20 4.3874¢-06
1.554¢-03 6.023e-03 2.0311e-20 4.3205¢-06
1.462¢-03 6.023e-03 1.9584e-20 4.1770e-06
IH 1.369¢-03 6.023e-03 1.8490e-20 3.9332¢-06
1.277¢-03 6.023e-03 1.6674e-20 3.5545¢-06
1.185e-03 6.023e-03 1.3964¢-20 2.9703e-06
1.092e-03 6.023¢-03 9.3098e-21 1.9803e-06
1.000e-03 6.023e-03 0.0000e+00 0.0000e+00
0.000e+00 3.011e-03 0.0000e+00 0.0000e+00 4.4012¢-06 4.4033e-06
9.230e-05 3.011e-03 -1.9947¢e-11 0.0000e+00 4.3864¢-06 4.3884¢-06
1.847e-04 3.011e-03 -6.3567¢-11 1.5200e-20 4.3201e-06 4.3215e-06
2.770e-04 3.011e-03 -1.2363¢-10 0.0000e-00 4.1768e-06 4.1780e-06
FA 3.693e-04 3.011e-03 -1.9060e-10 1.3882e-20 3.9330e-06 3.9341e-06
4.617e-04 3.011e-03 -2.6741e-10 0.0000e-00 3.5545e-06 3.5557e-06
5.540¢e-04 3.011e-03 -3.3279¢-10 1.0452¢-20 2.9702¢-06 2.9717¢-06
6.464¢-04 3.011e-03 -3.2862¢-10 0.0000e+00 1.9806e-06 1.9833e-06
7.387¢-04 3.011e-03 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
1.739¢-03 0.000e+00 0.0000e+00 0.0000e+00 4.4009¢-06 4.4033¢-06
1.646¢-03 0.000e+00 0.0000e+00 0.0000e+00 4.3860e-06 4.3884¢-06
1.554e-03 0.000e+00 0.0000e+00 0.0000e+00 4.3188e-06 4.3215e-06
1.462¢-03 0.000e+00 0.0000e+00 0.0000e+00 4.1751e-06 4.1780e-06
CD 1.369¢-03 0.000e+00 0.0000e+00 0.0000e+00 3.9312¢-06 3.9341e-06
1.277¢-03 0.000e+00 0.0000e+00 0.0000e+00 3.5529¢-06 3.5557e-06
1.185e-03 0.000e+00 0.0000e+00 0.0000e+00 2.9684¢-06 2.9717¢-06
1.092¢-03 0.000e+00 0.0000e+00 0.0000e+00 1.9806¢-06 1.9833¢-06
1.000e-03 0.000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000¢+00
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and CD are nearly same within a relative change of less
than 0.03%. It is indicated the periodic condition from
one cell to a connected cell is kept. Consequently, it can
be thought that only the analysis of the unit cell would be
guarantee nice results. Moreover, in the unit cell, we can
see the transverse velocity profiles of FA and CD is ex-
actly same. Table 2 shows the normalized transverse mo-
bility is very stable in spite of the great change of pres-
sure drops or Reynolds numbers. Therefore, it is known
the normalized transverse mobility shown in the equation 6
is very well defined.

Fig. 3 shows the convergence test of the numerical com-
putation for the hexagonal array of the fiber volume frac-
tion of 0.3 by using FEM, with isoparametric-Gaussian
quadrature order of 2. The convergence is checked by vary-
ing the element number or finite element mesh size. In the

Table 2. The stability of numerical calculation of dimensionless mo-
bility with various pressure drop for for hexagonal fiber ar-
ray. Power law index of 0.5, power law constant of 10 p,
and fiber volume fraction of 0.3 are used

Pressure drop Reynolds  Superficial Mobility Normzfli.zed
AP[dyne/cm’] number vel. M [em’/s g] Mobility
(Re) V. [em/s] M*
10 0.2097e-10 0.5889¢-05 0.1718e-08  0.1244e+00
20 0.1678e-09 0.2355e-04 0.3561e-08  0.1244e+00
30 0.5663e-09 0.5300e-04 0.5342¢-08  0.1244e+00
40 0.1342e-08 0.9422e-04 0.7122¢-08  0.1244e+00

400 0.1342¢-05 0.9422e-02  0.7122¢-07  0.1244e+00
40,000 0.1342e+01  0.9422e+02  0.7122e-05  0.1244e+00

.18
power law index
—— n=1.0
:‘E 45 L —o— n=0.3
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Fig. 3. Convergence test of the numerical computation using FEM
with isoparametric-Gaussian quadrature order of 2. Fiber
volume fraction is 0.3.

Jower element numbers the underestimated results are ob-
tained, but beyond an element number the normalized
transverse mobility arrives at a steady value independent
of power law index. The element number is chosen as a
compromise between the solution accuracy and the com-
putation time. So all numerical calculations to obtain the
velocity profiles are performed under the choosing ele-
ment of 360 for the unit cell.

The effects of fiber packing arrangements are also in-
vestigated for the case of Newtonian fluid flow. As shown
in Fig. 1, the aspect ratio S, of the representative cell can
be varied to obtain the different packing structures. Fig. 4
shows there are the extreme points for the normalized lon-
gitudinal permeabilities defined in the Newtonian fluid. For
the normalized longitudinal permeability, the minimum
value turns up at the cell aspect ratio of the hexagonal
packing structure. Inversely, the maximum value of the
transverse permeability appears at the region between the
square packing and the hexagonal packing. It is explained
that with the increase of the value of S, the distance
between the rows increases but the gap between fibers
within the row decreases.

Fig. 5 compares the numerical simulation results for the
case of Newtonian fluid flow with the different estimation
results. Gebart's estimation results[29] have excellent agree-
ment with the simulation results for both hexagonal array
and square array. Gutowski's results[30] have also good
agreement with the simulation results for both arrays. SCM

TTTTIT

—a— |ongitudinal, Z. Cai
—e— transverse, our FEMs

" square packing hexagonal packing

S

UM EEALILE]

Normalized permeability

T

.O1llllilllllg;lll||lkl

Cell aspect ratio

Fig. 4. Comparison of normalized longitudinal and transverse per-
meability of Newtonian fluid for various cell aspect ratio.
Fiber volume fraction is 0.3.
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Fig. 5. Comparison of our FEM results and the various estimations
on the normalized transverse permeability of Newtonian fluid.

results[26] are similar behavior with the numerical results
of hexagonal array, but they are overestimated. At low fib-
er volume fractions, the predictions by Kardos[31] yield
lower values of the normalized permeabilities than the simu-
lation results for both arrays. While at high fiber volume
fractions the hexagonal spacing simulation shows re-
latively good agreement with Kardos results. From Fig. 6,
we can see that the agreement between the predictions for
flow transverse to regularly aligned fibrous particles and
the experimental results[32-45] is good. Only part of the
experimental data which many previous workers found

102
1
) 10 i
o 0
«© 10 E
m -
E 100}
Q E
o 2 -
3 10 E--- FEM(square)
5 F O Bate(1992)
S 103 L D Bergelinf19s0)
2 E O Brown{1950)
[ @ Carman(1938)
g 10+ - 7 Chen(1955) A
ha E @ Ingmanson(1959)
© 105 [ @ wircn(1967)
N ' A  Kostomow(1977)
< F v Labrecque(1968)
g 106 L & stenmifton)
16 F @ Viswanadham(1978)
[ © Wneat(1963)
Z 107 L m white1960)
F & Wiggins(193g)
108 L1 I Il | | { ! I

060 1+ 2 3 4 5 6 7 8 9

Fiber volume fraction

Fig. 6. Comparison of experimental and simulation results for the
normalized transverse permeability.
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turned out to be suitable for inclusion in this study. The
fundamental criterion for accepting a set of results is that
the data follow Darcy's law. If the data do not follow
Darcy's law, then experimental results which the Reynolds
number is less than 10 are selected. A second criterion is ap-
plied when the experimental fluid is a gas except Bate's
results[32]. To ensure that the fluid does not slip at the fiber
surface, the Knudsen number is required to be less than 0.01.
The diameters of fibrous packing particles ranges over 0.001
um to 10000 um. At each medium, the packing fibers is a
randomly or non-randomly oriented in planes normal to the
flow.

Most polymers show shear thinning behavior as depict-
ed in Fig. 7, which shows the melt viscosity of PP resin
at different melt temperatures. The effect of shear rate was
corrected by single point method for the viscosity data ob-
tained by plate-plate rheometer (ARES, Rheometrics) at
low shear rate regions, and was corrected by Weissenberg-
Rabinowitch method for the viscosity data obtained by ca-
pillary rheometer (Rheograph 2003, Goettfert) at high shear
rate regions. And the entrance effect was corrected by Bagley
method.

The shear thinning nature of matrix will play a sig-
nificant role in the flow of molten resin through fibrous
medium. Only with a complete understanding of this im-
pregnation behavior can the novel design of crosshead die,
and production efficiency in manufacturing long fiber rein-
forced thermoplastic composites by pultrusion process be
optimized. Thus, the flow behavior of non-Newtonian fluids

10 AL B BSAALL B B B AL
: 180°C 3
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240°C
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102 107 10° 10" 102 10° 10* 10%
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Fig. 7. Shear viscosity as a function of shear rate for polypropylene
of MI 30 at various temperatures.
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with strong shear thinning character was interpreted by us-
ing the finite element method from microscopic viewpoint.
From the numerical simulation results for non-Newtonian
fluids, it is not possible to separate the permeability and
viscosity values, since the fluid viscosity varies throughout
the unit cell depending on the local strain rates. The mobil-
ities, defined as the ratio of permeability and viscosity, for
the flow of generalized Newtonian fluids across the hexa-
gonal array of fibers are depicted in Fig. 8. The power
law indices are varied from 0.3 to unity, and the power
law constant is kept at 10 poise. These results provide in-
sight into the dependence of the mobility on the rheologi-
cal properties and the fiber volume fraction. We can see that
the mobility is more significantly decreased, as the degree
of shear thinning of the polymeric melt becomes larger.
Especially, it is prominent in the higher fiber volume fraction.
Fig. 9 plots the normalized transverse mobilities of non-
Newtonian fluids with respect to the flow rate against the
fiber volume fraction. As the power law index decreases
for a given flow rate, the average fluid viscosity decreases,
and as a result the normalized transverse mobility in-
creases. This means the pressure drop during flow through
reinforcement is greatly reduced if the polymeric melt is
strongly shear thinning. It also suggests the possible use
of additives to promote shear thinning in the polymer ma-
trix in order to impregnate fiber reinforcement with mol-
ten resin for a short duration. Consequently, the degree of
shear thinning is very important factor in manufacturing
long fiber reinforced thermoplastic composites, since the
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Fig. 9. Normalized transverse mobility versus fiber volume fraction
for the flow power-law fluids across a hexagonal array of fibers.

real pultrusion process is generally operated with the high-
er fiber volume fractions above 0.25, and directly impre-
gnated fiber rovings with molten resin.

In the case of a Newtonian fluid, the permeability can
be simply separated from the mobility. To separate the ef-
fects of rheology and porosity from the mobility of non-
Newtonian fluids, the ratio of the normalized transverse
mobilities of Newtonian fluid and non-Newtonian fluids is
scaled as a function of the power law index. And the scal-
ed ratios for the hexagonal and square fiber arrays are
plotted against the fiber volume fraction in Fig. 10. The
scaled ratio of normalized transverse mobilities is collaps-
ed on a single line regardless of power law index. Thus,
we can separate the effects of the rheology and the fiber
volume fraction from the mobility of non-Newtonian fluids.
Still the scaled ratio of normalized transverse mobilities
shows clearly that even with the same fiber volume frac-
tion, there are considerable variations because of the pack-
ing structures. These results indicate that characteristics of
a fiber bundle other than fiber volume fraction are needed
to correctly describe the permeability status of a fiber as-
sembly. The scaled ratios of the normalized mobilities for
different fiber packing structures are replotted against the
reduced fiber volume fraction as shown in Fig. 11. Also
we found that the results are collapsed on a single line re-
gardless of the fiber packing structures. This result indica-
tes that the scaled ratio of the normalized mobilities is pre-
sented only a function of the reduced fiber volume fraction.

Fig. 8. Mobility versus fiber volume fraction for the flow of power-
law fluids across a hexagonal array of fibers.

From these results, the permeability and viscosity values
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can be separated from the simulation results of non-Newtonian
fluids, and a semi-analytic model of modified Darcy's law
can be consequently deduced. The transverse permeability
and effective viscosity in this model are expressed only as
a function of the fiber volume fraction, the ultimate volume
faction to capture the packing structures, and power law
index. Fig. 12 shows the comparison the closed form solu-
tion of semi-analytic model with the simulation results for
power law fluids across a hexagonal fiber array. Over the
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Fig. 11. Scaled ratio of normalized transverse mobilities as a func-
tion of reduced fiber volume fraction for the flow of power-
law fluids through hexagonal and square fiber arrays.
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Fig. 12. Comparison of the semi-analytic results and the simulation
results for power-law fluids across a hexagonal array of fib-
ers. Solid lines denote FEM simulation results and symbols
denote the semi-analytic results with power-law index of 0.
9, 0.7, 0.5 and 0.3, respectively.

full range of the fiber volume fraction and even in the
strong shear thinning, the semi-analytic results show great
agreement with the simulated results.

The main advantages of this semi-analytic model are
very easy to apply to real state independent of the fiber
packing arrays if only one determines the ultimate fiber
volume fraction for any fiber beds, and to obtain the solu-
tions for the wide range of the degree of shear thinning.

4. Conclusions

A major problem in manufacturing LFRTPC by using
pultrusion process is to uniformly and completely impreg-
nate the small gaps between the tightly packed reinforcing
fibers with thermoplastic molten resin because of their high
viscosity. Hence, understanding of the flow of molten
resin through fibrous medium is very important to develop
novel methods for impregnation.

Numerically obtained transverse permeabilities of align-
ed fiber beds for Newtonian fluids agree with various es-
timation results, especially well with Gebart's result. All
the presented successful reproduction of published ex-
perimental observations is presented.

The flow behavior of non-Newtonian fluids with strong
shear thinning character is interpreted by using the finite
element method from the microscopic viewpoint, and then
the transverse mobility, defined as the ratio of permeability



2%

and viscosity, of the cell was estimated by using Darcy's
law. From these results, we found that as the power law
index decreases for a given flow rate, the normalized
transverse mobility increases. This indicates the pressure
drop during flow through reinforcement is greatly reduced
if the polymeric melt is strongly shear thinning. It also
suggests the possible use of additives to promote shear
thinning in the polymer matrix in order to impregnate fib-
er reinforcement with molten resin for a short duration.

Also we found that the scaled ratio of the normalized
mobilities of non-Newtonian and Newtonian fluids with
respect to the flow rate versus the reduced volume frac-
tion is collapsed on a single line regardless of the fiber
packing arrays and power law index. The permeability
and viscosity values could be separated from the simu-
lation results of non-Newtonian fluids, and a semi-analytic
model for predicting the transverse permeability for non-
Newtonian fluid flow across arrays of aligned fiber bed
could be consequently deduced. The transverse permeabil-
ity and effective viscosity in this model are expressed
only as functions of the fiber volume fraction, the ultimate
volume faction to capture the packing structures, and pow-
er law index.

The validity of this semi-analytic model equation was
confirmed from comparing with the numerical results. It is
ascertained that the results of the semi-analytic model
were in good agreement over the full porosity range with
those of the numerical simulation for all possible arran-
gements in an aligned fiber bed and the very wide shear
thinning region. And this model equation will be utilized
to optimal design of a crosshead die for impregnating poly-
meric melt through the continuous rovings with multiple

monofilaments.
Nomenclatures
A; : the cross sectional area of the fluid flow
A, : the total cross sectional area of fluid and fibers
d  : the gap distance between surfaces of neighborhood fibers
D; : diameter of fiber
H  : viscosity level parameter defined by Eq. 3
K, : transverse permeability of Newtonian fluid
L : characteristic length
M : mobility defined as the ratio of permeability and viscosity
M* : normalized transverse mobility

Mewionian - DOrmalized transverse mobility of Newtonian fluid
n : flow behavior index of power law fluid
1, : radius of fiber
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Q : volumetric flow rate

s : the fiber space between the centers of fibers

S; : the cell aspect ratio

V, : superficial velocity

V, : transverse velocity of the fluid

y  : transverse direction coordinate
Greek letters

AP : pressure drop

g  : porosity

¢ : fiber volume fraction

ue © ultimate fiber volume fraction to capture the packing
structure

i : viscosity of the non-Newtonian fluid

U - effective viscosity

U, : zero shear rate viscosity

p : density of the fluid
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