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ABSTRACT

Slewing maneuver and vibration suppression control of flexible spacecraft model by
Lyapunov stability theory are considered. The specific model considered in this paper
consists of a rigid hub with an elastic appendage attached to the central hub and tip
mass. Attitude control to point and stabilize single axis using reaction wheel type
device is tested. To control all flexible modes is so critical to designing an active
control law. We therefore considered an direct output feedback control design by
using Lyapunov stability theory. It is shown that the ouput feedback control law
design with proposed configuration gives satisfactory results in slewing performance
and vibration suppression control.

1. INTRODUCTION

During the past few decades, the family of problems which arise in maneuver and vibration
suppression of lIrare flexible spacecraft has received significant attention in the research literatures
by Balas (1982), Linkins (1986), Junkins & Turnar (1986), and Meirovitch & Quinn (1987). Since
flexible spacecrafts are mechanically flexible systems, they are most rigorously described by a
hybrid (ordinary/partial) systems of nonlinear ordinary and integro-partial differential equations.
Due to the inherent difficulties, there have been a large number of research issues associated with
control of these spacecrafts. Dynamical modeling and control design problems have been subjects
of intensive research. The main difficulty of flexible space structures control arises from the fact that
the flexible structures are inherently infinite dimensional systems. Meirovitch (1990) extended the
classical Lagrange’s equations for hybrid systems using the extended Hamilton’s principle. Although
Meirovitch found the correct forms for the hybrid system, his equaitons embodied a differential
operator that must be developed through integration by parts for each specific applicaiton. Also, the
boundary condition operator in Meirovitch’s developments must be found by integration by parts
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for each specific integration. We were motivated by Meirovitch’s developments to establish, at
least for significant classes of systems, explicit governing equaitons that make allowance for space
structures. Since the equations of motion of infinite dimensional systems are usually described by
Partial Differential Equations (PDEs), some kinds of approximation are necessary to develop finite
dimensional systems for conventional control law design. The Finite Element Method (FEM) is one
of the most popular methods of spatial discretization, especially for Large Flexible Space Structures
(LFSS) (Kim et al. 1992, Reddy 1993).

In particular, we consider here large-angle rotational maneuvers with simultaneous vibration
suppression. The motion is described by a system of hybrid coordinates, using a combination of
discrete coordinates for translations and rotations of rigid bodies, and distributed coordinates for the
deformations of elastic bodies. The specific model considered in this paper (see Figure 1) consists
of a rigid hub with two identical elastic appendages attached symmetrically to the central hub and
tip masses (Junkins & Turner 1986, Meirovitch & Quinn 1987, Junkins et al. 1991, Bang 1992,
Kwon & Bang 1997). We consider only the case of a single-axis maneuver with flexible members
restricted to displacements in the plane normal to the axis of rotation.

Modern control techniques impose another important issue on estimation of all degrees of
freedom (DOF) with a limited number of sensors. The number of sensors and actuators are usually
less than the DOF of approximated systems. Since the vibrational motion of the structure induces
phase error at different locations of the structure, the sensor and actuator placement should take the
phase difference into account. The best strategy is to place the sensor and the actuator at the same
location called a collocated sensor/actuator system. Therefore, in this point of view, the Lyapunov
function to be used is designed to have its global minimum at the target final state of the pointing
maneuver, and considering a flexible spacecraft model. The commonly used total energy; i.e., the sum
of both kinetic and potential energy and error energy between the target state and any intermediate
neighboring state provide the main ingredients of the Lyapunov function (Bang 1992), but we have to
augment the elastic potential energy of the appendage because the hub angle (rigid body coordinate)
is a cyclic coordinate. Hance the output feedback control law technique by using Lyapunov stability
theory to be designed later on must be based upon these control objectives.

2. EQUATION OF MOTION AND PROBLEM STATEMENT

Let us first consider only the hub with one appendage and tip mass for convenience, and assemble
the two appendages later (Bang 1992, Kim et al. 1992). The coordinates we use are shown in Figure
1. The total transverse velocity (of a mass element on the appendage) is

v(z,t) = wlz,t) + (x+7‘)9(t) 0]

where «z is the auxiliary variable measured from the outer radius r of the hub along the undeformed
appendage axis, 6(¢) is the hub angle, w(z,t) is the deflection measured from the z axis, and
overdots denote derivatives with respect to time ¢. In Eq. (1), it is evident that we have neglected
radial deformations and the nonlinear radial velocity correction required to rigorously enforce zero
elongation of the deformed appendage.
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Figure 1. Deformation of a flexible appendage with rigid body motion.

Assuming Euler-Bernoulli beam theory and small deformation, we can express the total kinetic
and potential energy as follow (Meirovitch 1990):

IS SR Y 1, 1 /0v| \2
T = SJhf+ 2/0 pvdz + smv(L) + 2J,(—6—; L) @
and L X
1 J*w\ 2
V= 5/0 EJ(W) dz 3)

where Jj, is the rotary inertia of hub, J; is the rotary inertia of the tip mass, p is the mass density of
the appendage, m; is mass of tip mass, L is the length of the appendage, and ET is the appendage
flexural rigidity. The virtual work done by the external torque u; is given by

Wne = u,86(t) G))
Substitution of Egs. (1)-(4) into extended Hamilton’s principle as follows;
123 ty
(T —V)dt + / Wnedt = o 8)
t t,

The displacement w(z, ¢) can be discretized using a FEM expansion. The Hermite-cubic polynomial
shape functions that satisfy the conditions for admissibility and that are defined over the finite element
(Reddy 1993, Kwon & Bang 1997).

Substitution of Eq. (6) into Eq. (5) and integration over the spatial domains leads to the global
mass, stiffness, and forcing matrices. The assembled set of matrix differential equations is as follow:

In . Moe %ﬁu]{Z}Jf[g K(iu]{Z}:[SH%I} ©
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By using Eq. (6), the equations of motion of the hub with an appendage and tip mass can be
assembled. Note that boundary conditions are already imposed in the above matrices. The assembled
set of differential equations of motion can be expressed as follows:

M{ + Kq = Fu Q)

with configuration and control vectors q = [6; vT]7 and u = [u;; 0)7, respectively. In this study, the
control actuation is assumed to be applied to the center hub using a reaction wheel type device. The
matrices M and K are symmetric and positive definte, so obviously M, = M;{,, and the dimension
of the configuration vector is 2N + 1, when we discretize the appendage using N elements.

3. FEEDBACK CONTROL LAW DESIGN

For control applications, the system dynamics are usually modeled in the first order state space
differential equation. Let us introduce the 2n x 1 dimensional state vector

7T
x = [¢" ¢"] ®
Eq. (7) can be written as the first-order system

= Ax + Bu 9)
= Cx=0 (10)

where !
. 0 _ 0 _ -
A‘[—M-lK 0]’3‘[M-1F]’C“[1’0’ H0l

As a special case, we assume a collocated sensor/actuator pair for the rotating beam. The actuator
is located at the hub producing torque about the vertical axis and the sensor is also located at the
hub measuring the angular displacement and/or angular velocity of the hub. With the collocated
sensor/actuator set, the control law design is relatively simple.

First, we select a candidate Lyapunov function as (Junkins et al. 1991, Bang 1992)

2

. L . 2 ) 2
W=auf? + a [/ lp(20 +0)* + EI (%—‘;) ]dz- +me (20 +0(2,1))
0 x

+ Jt(9+w’(x,t))2} + az(8 — 65)? @11)

where prime denotes derivative with respect to displacement . The Lyapunov function is shown
as the combination of each sub-structure’s energy; hub, appendages and tip masses. Furthermore,
a1, ay and a3 are positive weighting constants determining the relative importance of sub-structure’s
energy, and d; is a constant final desired angle. The Lyapunov function is positive definite with
respect to the steady equilibrium point

(9,6, w,w); = (65,0,0,0) 12)
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Table 1. The configuration parameters (Bang 1992).

Parameter Symbol Value
Hub radius r 1ft
Rotary inertia of hub Jn 8slug - ft?
Mass density of appendage p 0.0271875 slug/ ft
Elastic modulus of appendage E 0.1584 x 10'°1b/ f¢*

Moment of inertia of appendage 1 0.4709502797 x 1077 ft*
Appendage length L 4.0 ft

Appendage thickness t 0.01 ft

Appendage height h 0.49 ft

Tip mass me 0.156941 slug

Rotary inertia of tip mass Je 0.0018 slug - ft*

The control torque at the center body should be designed in such way that the Lyapunov function
decreases asymptotically toward the equilibrium point. For this purpose, we take the time derivative
of the given Lyapunov function

U= al[u+g1(0-0f)+g3(rSo—Mo)]t9 (13)

where g1 = a3/ay > 0, g3 = (a2 — a1)/a; > —1 are design parameters or feedback gains of the
control law. My and S5y are the internal bending moment and shear force, respectively at the root of
the appendage. Since our goal is to design a stabilizing control torque input, the most natural choice
is to make the time derivative of the Lyapunov function negative in such a way that

u+g1(0 —0f) +g3(rSo — M) = —g26, 92> 0 (14)

Therefore, )
u = —g1(6—0,)—g20—g3(rSO~Mo) (15)

so that . .
U=-a1926* <0 (16)

As we cansee, U < Oaslongasf # 0. At§ = 0, the Lyapunov function is equal to zero which
does not mean that the system is at equilibrium condition due to other nonzero motions like angular
position error and flexible motion (Bang 1992). In order to reach the steady equilibrium state, the
Lyapunov function continues to decrease as dictated by Eq. (12).

4. APPLICATION AND SIMULATION

We have simulated and discussed the slewing maneuver and vibration suppression problem
of the hub-appendage-tip configuration in the previous sections. The configuration parameters of
spacecraft undergoing large rotations are as following Table 1. A reaction wheel type actuator is
mounted on the hub and imparts torques about the vertical (symmetry) axis of the system. This
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actuator has sufficient bandwidth to simultaneously impart both the large amplitude, low frequency
torques required for large angle maneuvers and the low amplitude, high frequency torques required
for vibration control.

A 45 deg (6; = 45deg) slewing maneuver with vibration suppression is simulated. For the
Lyapunove stability control law a constant gain feedback law in Eq. (15) with the results presented
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Figure 2. Simulation results of large angle maneuver and control.
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Figure 3. Simulation results of vibration suppresion control.
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Figure 4. Hub error and control torque history by reaction wheel.

in Figures 2, 3, and 4, where the displacements and angular velocity of hub and tip mass are shown.
This is due to the final target angle combined with the feedback gains

g1 = 5000zin./rad, g, = 8000zin./rad, g3 =0o0r — 0.5

The feedback gain (g3) on the boundary force feedback is tested to investigate its effect on the
closed-loop performance.

As we can see in Figure 2, the hub angle converges to the final angle 45° within 15 seconds
of simulation time. Also, we observe large overshoot (~ 5deg) in Figures 2 and 4, requiring large
amount of torque instantaneously at the start of the maneuver. The significant structural vibration is
settled around 11 sec, and the control action was terminated at 13 sec in Figure 3.

5. CONCLUSION

The results of this paper provide a basis for systematic constant feedback gain solution of
large-angle single-axis flexible spacecraft rotational maneuvers, when distributed hybrid system is
employed. Output state feedback control scheme by using Lyapunov stability theory is applied
to obtain reaction wheel torquer control law for pointing and stabilizing single axis of a flexible
spacecraft model. It is shown that the Lyapunov stability control law with proposed configuration
gives satisfactory results in slewing performance and vibration control. Further study can be made
with dynamically more complex space structures including more vibrational modes. It is hoped that
the insight gained from consideration of this paper will prove beneficial in the large angle maneuver
and vibration suppresion control technique for the practical applicaiton into actual spacecraft.
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