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A Sediment Concentration Distribution
Based on a Revised Prandtl Mixing Theory
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Abstract

Modifications of Prandtl’s mixing length theory were used to obtain a power velocity
distribution in which the coefficient and exponent are variable over a range from
1/4 to 1/7. A simple suspended-sediment concentration distribution was developed
which can be associated with this modified velocity distribution. Using nominal val-
ues of 5=1.0, k=0.4 and visual accumulation tube values of fall velocity, the compar-
ison between theory and field measurements by the USGS on the Rio Grande is fair.
Doubling the value of the exponent results in a good comparison. Further research is
needed to be able to better choose 5, «, and fall velocity values, but such research
will not be able to account for the effects of large-scale turbulence and secondary
flows. In a pragmatic sense, a special set of fairly detailed measurements can estab-
lish coefficients and exponents for any gaging site.
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1. Prandtl’'s Mixing Length Theory and
Logarithmic Velocity Distribution.

Prandtl’s notion of turbulence was, in es-
sence, that small masses of fluid are exchanged
without losing much, if any, of their momentum
(velocity). When mass from a higher-velocity
region passes a point, the instantaneous velocity
at the point becomes greater than the temporal
mean velocity; when mass is from a lower-ve-
locity region the instantaneous velocity is less
than the mean velocity (u=u-+uand u=u-u,
respectively). Prandtl’s (1926) original mixing
length theory and the logarithmic velocity distri-
bution begin with the equation for shear:

r=-puv’ )

in which p is the mass density of the fluid and

the bar over the product denotes mean value.
The concepts used to relate the turbulent fluc-

tuation # and v to the mean velocity gradient du

/dy are:
woe (G ) (2)
voou 3)
(=KY (4)
T2 du,,
o K y (dy) (5)

where y is distance from the boundary, ¢ is the
mixing length (the effective distance the mass
of fluid off density o moves laterally in turbu-
lent flow), and « absorbs all the proportionality
coefficients.

Prandtl then assumed the internal shear was
equal to the boundary shear:

T=Tp (6)

The differential equation becomes:

TR 7
vto;p L.

which can be integrated as:

u

Jtolo

= —i— In y+constant (8)

which agrees very well with Nikuradse’s meas-
urements in pipes.

2. Rouse’s Concentration Distribution

Rouse (1937) used the logarithmic velocity
distribution, O’'Brien’s (1933) diffusion equation
for suspended sediment, mixing coefficients for
momentum (velocity) and suspended sediment,
and assumed that the two mixing coefficients

were proportional.

- _dC
Cy= Esdy (9)
e dt
T*pem 'y (10)
r=(1—%)ro (11)
E.=FEn (12)

Combining and integrating, one gets:

W

C_( Dy, a %"
C., ' » a

(13)

where the a is the value of y such that C(y=a)
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= Ca, C = sediment concentration at level y;
C. = reference sediment concentration at level
a; D = flow depth; w = fall velocity, ¥ =
height above the channel bed; # = coefficient
of proportionality between &, and &,,, 8 = 1.0
unless otherwise noted; ¥ = the “universal”
mixing length coefficient (not necessarily
Prandtl’s «, and probably variable, not con-
stant); r, = tractive force at stream bed; p =
density of water; &, = mixing coefficient for
sediment; and &€, = mixing coefficient for mo-
mentum.

If a B value of about 1.5 is used, Rouse’s equa-
tion agrees quite well with measurements. How-
ever, it is difficult to explain why sediment is
mixed more effectively than momentum. Rouse’
s internal shear varies linearly in the vertical
(as it should), whereas Prandt!’s internal shear
was constant. There are other details of
Prandtl’s concept that should also be examined
further. However, the best reason to revisit
Prandtl and Rouse is the difficulty in integrat-
ing the product of their equations to obtain the

suspended sediment load.

- ("uc 1
qs—fo u Cdy (14)

3. Laursen’s (1980) Revision of Prandtl’s
Assumptions

Several of Prandtl’s statements or assump-
tions do not stand up well to critical scrutiny:
(1) the instantaneous turbulence components
are not proportional to the product of the mix-
ing length and the mean velocity gradient, (2)
the temporal averaged turbulent shear is not
proportional to some measure of the product of
the two temporal averaged turbulence com-
ponents, and (3) the internal shear is not a con-
stant equal to the boundary shear.
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A few simple revisions are sufficient to make
the derivation of the logarithmic velocity distri-
bution more rigorous. Let

du

/Fmt—ag/— (15)

S fe (16)

(17)

_iL_zﬁ
Jutr v

where R is a correlation coefficient equal to:
=(1-2
R=(1 D) (18)

This assumption (Laursen, 1980) will result in
the familiar logarithmic velocity distribution
when the correct internal shear distribution, Eq.
(11), and Prandtl’s mixing length assumption,
Eq. (4), are used.

4. Laursen’s Concentration Distribution

(Laursen, 1980)

1f, now, the difference between the mixing co-
efficients for sediment and momentum Is partly
due to the correlation coefficient R, the relation-
ship between the two is:

S=TI5/Dy

and the mixing coefficient for sediment be-

comes.

E.=8kJt/0y (20)

The differential form of the sediment diffusion
equation is then:



Equation {22)
=10

Equation (13)
B=10&15

1.0 1.5

C/Ca (a = 0.1D)

Fig. 1. Comparison of Rouse (Eq. (13)}) and
Laursen (Eg. (22)) Concentration Distribu-
tions (#=10, £ =0.4, a=0.1D; Laursen,
1980)

dC _ wdy

—_—— (21)
C [z,
Bk ?LV

which integrates simply to:

= (%) (22)

Q

Note that 8 in this equation will not be the same
as the £ value in the Rouse equation. Both g val-
ues are found by forcing the theoretical equa-
tions to fit measured data. A comparison of the
two equations is shown in Fig. 1.

5. Jung’s (1989) First Revision of Laursen’
s Revision of Prandti’s Assumptions

Laursen’s mathematically simpler sediment
concentration distribution equation still requires
integration involved in computation to find the
suspended sediment load. Use of a power distrin
for the velocity would make the integration
much easier. However, there would be a logical
inconsistency since the logarithmic velocity dis-

tribution was used in deriving the concentration
distribution. The first attempt to resolve this in-
consistency was a change in the assumption for
the mixing length to:

(=K y7 (23)

Using Laursen’s other assumptions (Egs. (15),
(16), (17), and (18)), combining terms, and in-
tegrating results in a power velocity distribution

;z(l) To 1 —r+1
«Vo 7+

If y is taken as 3/4, (-y + 1) is 1/4; if yis 6/
7, (= + 1) is 1/7. These are the typical values
found in the literature for rough and smooth

(24)

boundaries, and

u= (7:1—)\/% g (25)
or
E=<Kl>,/% ol (26)

Note that x values in this power equation do not
have to be the same as the ¢ value in the loga-
rithmic distribution equation (usually taken as
about 0.4 or less). A comparison of the power
equation (Eq. (26)) and the logarithmic equa-
tion, and the universal equation indicates the
power distribution with 1/7 exponent fits well
with logarithmic velocity distribution, as shown
in Fig. 2.

Power—law formulas were used before logarith-
mic equations were used (Daily and Harleman,
1966). The general power velocity distribution
equation (Izbash and Khaldre, 1971) is:
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Fig. 2. Comparison of Velocity Distributions

u

— ;}y_ x
A ( D) (27)
where U,.. = velocity at the water surface; u

= time—-averaged flow velocity at a distance y
from the bed; and x = a power index, usually
between 1/4 to 1/7.

The velocity u at level y is given by Eq. (27),
and since the mean velocity U times D is equal
to the discharge per unit width, q, is:

q=UD= fODZdy (28)

a=0D= [ Un () dy (29)
which results in:

q=UD=(47)UnuD (30)
So,

Unan(x+1)u (31)
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Therefore,

u y
=2y 32
(x+ 1)U (D) (32)
= )
==+ () (33)

Continuing to follow Laursen’s assumption,
the associated concentration distribution equa-
tion can be obtained. The mixing coefficients,
the differential diffusion equation, and the final

formulation are:

E.=J7/o (1-y/Dxy’ (34)
ES:B—E;%’/ /o kY (35)
(1—5)
dC_w , w dy_ z
C e P sk g y 7’13’ (36)
where
w
= (37
Bk Jto/o )
and
z -7+l ¥4 1
—557e —=y
g —e T+ /e 7+1 (38)
If y = 3/4 (rough boundary):
c = 4za'" /e 4zy"! _e4z(a“‘—ym) (39)
C. -
If y = 6/7 (smooth boundary):
CQ:ejza“’ e 7zy"" —e 7z(8"7 - ¥y (40)
7



(1993) Second Revision of
Laursen’s Revision of Prandtl’s Assump-
tions
Unfortunately the first attempt to find a sim-

6. Jung’s

pler pair of equations resulted in a complex con-
centration distribution equation to go with the
simpler power velocity distribution. In the sec-
ond attempt at simplicity, the assumption R=(1
—y/D) for the correlation coefficient was modi-
fied to:

R=0-3)y""" (41)

Retaining the previous assumption for mixing
length, the velocity distribution becomes:

~_1 /1, 1 ~27+2
Voo 2y+2”

which appears to be slightly different form Eq.
(24), but when y is 7/8 or 13/14 the exponent
is 1/4 or 1/7 and results in Egs. (25) and (26).
The mixing coefficients, differential diffusion

(42)

equation, and final concentration distribution
equation become:

En=yri/o 1-Hu v (43)
E=Br /o vy

dC w dy _ . dy

&S v o 5 44
C Bk Jtdo ¥ “y (44)
C _,apryre

—C:-(;) (45)

Eq. (45) is the same as Laursen’s concentration
distribution, Eq. (22). A comparison of the

three concentration distribution equations
(Rouse, Eq. (13); Laursen, Eq. (22); and
Jung, Eq. (40)) is shown in Fig. 3.
1. 0
a3
>~ 3
~0. 8] @0000 Rouse( E .lS%
. 3 wﬂwﬂLlurlen?E%. 2)
a b awesa Jung( Bq. 40)
23 (z=1/2]
20. 6]
o ]
> ]
20 4
:
0. 2]
0. Ot I T e o B L o B e
0.0 0.5 1.0 1.5

Relative concentration, C/Ca

Fig. 3. Comparison of Egs. (13), (22), and (40)
(=10, x =0.4,a=0.1D)

7. Comparison of Laursen’s Concentration
Distribution with Rio Grande Measure-
ments

Fig. 4 shows a comparison between the theo-
retical concentration curves using equation (45)
and two sets of measurements made by the U.S.
Geological Survey (USGS) at gaging stations
2243 and 2249 on the Rio Grande (Culbertson
et al,, 1972). The bed material and suspended
sediment samples were divided into four frac-
tions in the USGS data (Fig. 5), and these were
used for the computations. The z—values were
based on nominal values ¢ =0.4, §=1.0, visual
accumulation tube fall velocity, and measured
values of slope and depth.

The reference concentration used in Fig. 4
was at the lowest level sampling point. If the

mid—depth sampling point had been used, the
theoretical curve would seem to go through the
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Fig. 4. Comparison of Concentration Distribution
(Eq. 45)
Marcial, Rio Grande River.

with measurements at San

Percent finer

0.1
Sieve opening, mm

Fig. 5. Typical Bed Material Size Distribution at
San Marcial, Rio Grande River, Station
2249.

measured data much better. However, while this
better fit 1s more apparent than real, the better
fit does lead to a relevant question. where
should the sediment sample be taken? For
finesediment the reference level should ap-
proach mid—depth; for coarse sediment it should

approach the bed, for mixed sediment it is some-
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where in between and depends partly on the
sediment problem to be evaluated.

In Fig. 6, the same data are used as in Fig. 4,
and the value of z is arbitrarily doubled. The
Laursen curves now go through the measured
points as well as one could expect. Note that the
lowest sampling elevation is still the reference
level, The question, then, is why the “correct” z
value might be twice the nominal z value. The z
value would be larger if the ¥ value was small-
er. The ¢ value could be in the order of 0.32;
this would increase z by a factor of 1.25 (0.4/0.
32). The diameter determined by the visual ac-
cumulation(VA) tube is presumed to be the di-
ameter of a sphere falling by itself, and the sedi-
ment particles are presumed to have the same
fall velocity (or time of fall) as measured by
the VA tube. This should give the “correct” fall
velocity if the concentration of the particles in
the tube is the same as the concentration in the
flow, and if the turbulence in the tube is the
same as the turbulence in the stream. If the con-
centration in the tube is greater than in the
stream, a factor larger than unity should be ap-
plied. Turbulence in the tube is caused by the
falling particles and can probably be safely ne-
glected. Not enough has been done to permit es-
timating the effect of stream turbulence on the
fall velocity of suspended sediment particles.
One can argue that since non-spherical parti-
cles tend to fall such that the drag forces are at
the maximum, turbulence of a scale which
would rotate particles would result in a larger
fall velocity. If these two velocity effects need
1.20 1.33,
respectively, the three factors together would in-

multiplying factors of and
crease the nominal value of z by a factor of two
(1.25%1.2%1.33). A value of # of less than
unity would have a similar effect, but there is
no evidence that this would be a reasonable sup-

position,



More research to clarify these issues in need-
ed, but is not unreasonablé to believe that the z
used in Fig. 6 is just as valid as the z used Fig.
4, if not more so.

It 1s probably not reasonable to expect
Prandtl’s mixing length theory (or any varia-
tion of it) to be entirely satisfying in describing
either the velocity distribution or the concentra-
tion distribution of a real river or, even, of a
laboratory flume. There are other aspects of the
flow that can have substantial effects: secon-
dary currents that are quite steady and persis-
tent, such as the spirals induced by bends, and
vortices that are more random, close to the
scale of the river depth, and which could also be
considered very large—scale turbulence — but
which are not the phenomenon described by
Prandt!’s turbulence.

The masses of fluid moving up and down lead

oocoo Measured (2249)
] Laursen (2%
b asaas Measured (2248)
51 = — Laursen (23)
1.
-] 4
.
° ]
-~
- ]
-
= 1. 0}
]
‘ -
" 3
a ]
o ]
C] E
0. 61
1
~
1 -
[+ 20K ¢ o o e o S o o o e
0.12 0.186 0.20 0.24

Concentration, percent by weight

Fig. 6. Comparison of Concentration Distributions
(Eq. (45)) Using Corrected z with Mea-

surement at San Marcial, Rio Grande River.

to Prandtl’s theory of mixing length. The large—
scale eddies and vortices are a different phe-
nomenon and are not approximated by Prandtl’

s theory. Secondary flows, such as vertical-and
horizontal-axis vortices, can be very important
in sediment problems. They could be more im-
portant in the turbulent mixing of sediment
than in the turbulent mixing of velocity (mo-
mentum).

8. Average Sediment Concentration Based
on the Simpler Concentration Distribu-
tion Equation and a Power Velocity Dis-
tribution

From the general relationship among suspend-
ed lead, concentration, velocity, and depth,

D— —_
a= [ uCdy=y C,UD (46)

where 7 is a coefficient related to units of the
variables, and

e 3t

where ¢ is equal to 2ds, a value that may be
changed with further research. From Eq. (45)
for the sediment concentration distribution,

(47)

W
T
0
B"\/p

=C (2

C—Ca(y)

Finally from Egs. (33), (45), and (47),
Du

Co= | = ¢ (48)

Cu= [ x4 Y gC D ay

(49)

1

D
x—z+l
x—z+17 ]a (50)

C,=(x+1)D*'C,a{
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or, the average sediment concentration in a ver-

tical is
JCa, . .
Cm=‘(-ﬁl)1—[)7 (DF?—a’?) (51)
where
J=x+1=5/4~8/7 (52)

In Eq. (51), in this study at this time, is as-
sumed to have a very small value near the bed
of the river at a level equal to 2ds,.

9. Comparison of Eqgs. (40) and (45)

Computed values for the vertical concentra-
tion using Eq. (40) and Eq. (45), which is the
same as FEq. (22), are compared in Fig. 3. The
two curves are quite consistent, but there are in-
teresting differences. When computed values for
a standard rectangular channel are considered,
the C/C, values using Eq. (45) are always less
than the C/C, values using Eq. (40), but the dif-
ference is negligible. Also, there is no big differ-
ence in computed values between when 3/4 or 6
/7 is used as the y value, (or velocity power of
1/4 or 1/7), as shown in Fig. 7. Generally,
these two curves have good consistency. It is
concluded, therefore, that computational ease is
an appropriate factor to consider in choosing an
approximate equation.

Also correlation coefficients (Egs. (18) and
(41)) and mixing lengths (Eqgs. (4) and (23))
were examined graphically, as shown in Figs. 8
and 9, respectively. Differences are apparent in
the correlation coefficients in the lower level of
flow, while the two mixing lengths do not agree
above the mid-point of the flow. However, the
values of these two quantities, ¢ and R, cannot
be directly measured, and it is not possible to

FH304 HIR 1997F 2A

say which is a better approximation. Either pair
gives velocity and concentration distributions
which are acceptable approximations.

y/D
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Fig. 7. Comparison of Concentration Distribution

Using x=1/4 and x=1/7, $=1.0, k =0.4, a
=0.1D, and z=0.1874.
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Fig. 8. Comparison of Correlation Coeffi-
cients (y =6/7).

This study demonstrates that simple forms of
the velocity and concentration distribution equa-
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10. Discussion and Conclusions

tions are sufficiently accurate. The most uncer-
tain step in the computational procedure pre-
sented is related to the value of the Rouse num-
ber z=w/(x B/ T./0 ). Variables in this parame-
ter are not yet completely understood. The fall
velocity value needed in the computation proce-
dure is the fall velocity of a natural sediment
particle in turbulent flow and in the presence of
many other particles. The ¥ needed is for flow
in a natural channel of complex planform and
with complex (and variable) roughness ele-
ments. Note that the value of « is likely to be
different for different assumptions of the turbu-
lence structure and relation to the mean veloci-
ty gradient. The £ factor needed is a measure
of the difference between the mixing of momen-
tum and sediment in suspension over and above
the correlation coefficient used in the deriva-
tions presented in this study. The scant evi-
dence cited here suggests that the restricted S
might have a value of about one, and that any

variation would be small. Subsequent compan-
ion papers will examine: (1) the ability to pre-

12

dict suspended sediment loads by the integra-
tion of these proposed equations, and (2) possi-
ble errors to be guarded against in single-point
sampling.

The velocity distribution and the concentra-
tion distribution can be written with parameters
containing variables generally accepted. Better
agreement with measurements can be obtained
by using coefficients and exponents derived
from measurements at the specific gaging site.
The difference between nominal “theoretical”
values of the requisite parameters and variables
and the empirical values based on measure-
ments can sometimes, and to some extent, be
explained by known variations in such things as
and fall velocity. Mixing length theory is obwvi-
ously a simplified concept which does not fuly
describe flow behavior and mixing by large—
scale secondary and tertiary flow phenomena
which are something between mean flow behav-
lor and random turbulent eddies.

Further research on the characteristics and
effects of secondary components of the mean
flow and of transient vortices, which might be
classified as large—scale turbulence, would be in-
teresting and challenging. However, each gag-
ing site would be unique at least in some way,
and it is very doubtful that the behavior of
these flow features could ever be well predicted
for specific sites. Field measurements of veloci-
ty and concentration distributions should be suf-
ficient to permit adjustment of the coefficients
and exponents of the proposed equations.

Prandtl’s basic concepts are still useful, but
his concepts can be revised slightly and refined
in order to better describe fluid flow phenome-
na. The refinements offered herein result in a
better, but not perfect, description of the sedi-
ment concentration distribution in the vertical.
With more and better measurements, other as-

sumptions of the mixing length and the correla-
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tion coefficient might be made to give better
results. There is always a temptation to say it
would be wise to wait for better measurements
and understanding of all the secondary factors
involved, such as the fall velocity of particles in
a turbulent field and in the presence of other
particles of various sizes and the effects of sec-
ondary flow in a supposedly two—dimensional
flow. However, measurements made when es-
tablishing a gaging site, and occasional meas-
urements subsequently, as is done today, should
be good enough for acceptable determination of
suspended sediment loads by single—point sam-
pling.
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