Abstract
For a number of years it has been known that flexural vibration in a beam and plate can be damped by the application of layer of damping (viscoelastic) material that is in turn constrained by a backing layer or foil. In this study, a quantitative analysis of damping of the sandwich beam has been performed by using impact test. The damping is characterized by the loss factor .etha. in which the damping is normalized by imaginary part of the complex bending stiffiness of the beam. Results show that the relative thickness of the sandwich beam gives more effect on the riatural-frequencies and loss factor than the variation of width does. It is also shown that the Ross-Kerwin-Ungar equation and impact test can be effectively used to identify the damping characteristic of the sandwich beam and viscoelastic material.