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Raf-1, a cytoplasmic serinefthreonine protein kinase, serves as a central
intermediate in many signaling pathways in cell proliferation, differentiation,
and development. In this study, we investigated that D-raf, Drosophila
homolog of the human c-raf-1, is involved in ultraviolet (UV) responsive
events by using hypomorphic mutant D-raf €% and Draf-lacZ transgenic fI1¥.
At first, effect of UV damage on the survival of wild-type and D-raf""’
strains was examined. In terms of 1/LD156’ value, the relative ratio of UV
sensitivities of wild-type versus D-raf¢'" strain was 1:2.2. By using
quantitative B-galactosidase activity analysis, transcriptional activity of the
D-raf gene promoter was also examined in UV-irradiated Draf-lacZ
transgenic larvae. UV irradiation increased the expression of /acZ reporter
gene in Draf-lacZ transgenic fly. However, in D-raf'’ strain the transcrip-
tional activity of D-raf gene promoter by UV irradiation was extensively
reduced. Results obtained in this study suggest that D-raf plays a role in

UV response, leading to better survival of Drosophila to UV damage.

Treatment of cell with environmental stress including
DNA damaging agents, UV irradiation, ionizing radiation,
alkylating agents or bulky adduct formers, causes
massive regulatory changes that, by and large, mimic
the proliferating response induced by phorbol ester
or growth factors (Herrich et al., 1992; Kasid et al.,
1996). UV light enhances the transcriptional activity
of several genes, e.g., human immunodeficiency virus
type 1 (HIV-1), collagenase, c-fos, and metallothion-
ein (Stein et al, 1989). UV-induced transcriptional
activation of c-fos, HIV-1 and collagenase genes is
known to be mediated through same enhancer ele-
ments responding to phorbol ester and growth factor
(Stein et al,, 1989). UV irradiation not only augments
the activity of pre-existing transcription factors, such
as Fos, Jun, AP1, and NF-kB (Devary et al., 1993;
Sachsenmaier et al., 1994a), but activates new syn-
thesis of genes for repairing of DNA damage (Stein
et al., 1989). Two distinct signal transduction pathways
for the UV response have been suggested (Mount,
1996). The first proposed pathway is that DNA
damage generates the primary signal which leads to
the induction of UV responsive genes (Karin and
Herrlich, 1989; Holbrook and Fornace, 1991; Herrich
et al., 1992). The second is that the pathway initiated
in an extranuclear compartment (Devary et al., 1992;
Radler-Pohi et al., 1993; Sachsenmaier et al., 1994b).
In both pathways, the signaling component activates
the activity of transcription factors, leading to the tran-
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scriptional increment of specific target genes (Mount,
1996).

Raf-1, cytoplasmic serinef/threonine protein kinase,
mediates the transmission of mitogenic signals initiated
at the cell membrane to the nucleus, resulting in the
activation of transcription factors that regulate cell
growth and proliferation (Kolch et al., 1991). D-raf,
Drosophila homolog of human c-raf-71, has been
cloned and also shown to be required in the regulation
of cell proliferation and differentiation (Nishida et al.,
1988; Ambrosio et al., 1989; Hata et al., 1994). On
the other hand, Raf-1 kinase has also been proposed
to be an obligatory bottle neck shared by UV, phorbol
ester and other growth factors (Rapp, 1991; Kyriakis
et al, 1992; Sachsenmaier et al., 1994b). In deed,
Radler-Pohl et al. (1993) demonstrated that UV-induced
signal transduction depends on the activation of Raf-1
kinase in HelLa tk™ cells.

Most evidences for the existence of UV signaling
pathway have been obtained by using the mammalian
cells in vitro. However, it is not tested yet whether Raf
really involves in UV signaling pathway in vivo or UV
signaling pathway is conserved in between Drosophila
and mammal. In this study, by using transgenic fly
carrying Draf-lacZ fusion gene and hypomorphic mutant
D-raf"'® strain, we demonstrate that D-raf gene is
involved in UV response in Drosophila.

Materials and Methods

Fly stocks

Fly culture and crosses were performed according to
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Fig. 1. Morphological effects of LPA in EB3 cells. The E63 cells
cultured in DMEM containing 10% horse serum were seeded onto
gelatin coated 6-well plates at the density of 3% 10° celifwell. After 48 h
in culture, the medium was switched to ITS medium (B), or TS
supplemented with LPA 2ug/ml (4.6 uM; C), 5ugiml (11.5uM; D), 10u
g/ml (23.0 uM; E), 15 ug/mi (34.5uM; F), or 10% horse serum (A). After
4d in culture with daily changing the medium, the cells were fixed and
stained with Hematoxylin-Eosin.

then daily changed the medium with serum-free ITS
medium with or without LPA. When myoblasts were
cultured in the complex medium, they started to fuse
within 3d after plating, and differentiated to form
myotubes (Fig. 1A and Fig. 2). When myoblasts were
grown in the serum-free ITS medium without LPA, the
proliferation was largely restricted and the cell number
was not much increased because insulin is a unique
proliferation-promoting molecule in ITS medium (Fig.
1B and Fig.2). The addition of LPA in ITS medium
markedly increased the cell number by 2 to 4 fold and
its effective concentration was higher that 5ug/ml
(11.5uM) (Fig. 1 and Fig. 2A). This is about same
dose (6.5ug/ml) required to induce cellular reponses
such as DNA synthesis and proliferation in fibroblasts
(van Corven et al., 1989, 1993). Addition of LPA to
the complex medium containing horse serum had no
effect in cell proliferation and percent fusion (data not
shown). This may be due to the fact that serum
contains both LPA in the range of 0.87-8.6 ug/ml and
various growth factors (Eichhoits et al., 1993). However,
concentrations higher than 20 ug/ml of LPA caused
cell lysis because LPA is a polar lipid and has a
detergent-like activity (data not shown).

LPA effect on myoblast differentiation.

In the terminal differentiation process, myoblasts were
fused and formed myotubes, and expressed muscle-
specific proteins such as myosin heavy chain (MHC),
tropomyosin, troponin and muscle creatin kinase. To
elucidate the effect of LPA on E63 myoblast differen-
tiation, myoblasts were cultured in ITS medium con-
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Fig. 2. Effect of LPA on proliferation and differentiation of E63 cells. (A)

Dose dependent stimulation of myoblast proliferation by LPA. (B) Effects
of fusion stimulation in E63 cells by LPA. E63 cells were cultured in
DMEM containing 10% horse serum for 2d and then cultured for 4d in
ITS medium (ITS), with LPA 2ug/ml (ITS2), 5 ug/mi (ITS5), 10ug/mi
(ITS10), 15 ug/ml (ITS15), or 10% horse serum (HS). At 4d after daily
changing the media, the celis were fixed and then stained with
Hematoxylin-Eosin. The percent fusion was determined by the ratio of
the number of nuclei in myotubes with three or more nuclei divided by
the total number of nuclei as seen at X 200. Ten independent fields
were chosen for each dish.

taining LPA. Myogenic differentiation was indicated by
MHC expression and percent fusion. The expression
of MHC was examined by Western blot analysis using
anti-MHC mouse maonoclonal antibody (MF20). In culture
containing 10% horse serum, E63 cells normally
expressed MHC at 4d after plating and its expression
was gradually increased during differentiation (Fig. 5).
In serum-free ITS medium, the expression of MHC
and cell fusion were strongly suppressed (Fig.2 and
Fig.5). LPA in ITS medium appeared to stimulate
myogenic differentiation in a dose-dependent manner
up to 15ug/ml in which the expression of MHC and
myoblast fusion were markedly increased (Fig- 2B and
Fig. 5).
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