Abstract
We have screened available chromosomal deficiencies on the X chromosome for genetic loci whose zygotic expression is required for body-wall muscle development during embryogenesis in Caenorhabditis elegans. Previously, it had been reported that no sign of muscle development was detected in nullo-X embryos arrested at an early stage of embryogenesis. Based on this observation, it has been suggested that genetic loci exist on the X chromosome whose zygotic expression is essential for body-wall muscle formation. In order to identify such myogenic loci, 9 chromosomal deficiencies covering approximately 45% of the X chromosome have been tested. Homozygous embryos from these deficiency strains were collected and terminal phenotypes of arrested embryos were observed by Nomarski microscopy. As a secondary assay, monoclonal antibodies against two myosin heavy chain (MHC) isoforms, the products of the myo-3 and unc-54 genes, were used to detect body-wall muscle differentiation. All the homozygous deficiency embryos were positively stained with both MHC antibodies and muscle twitching movement was observed in most cases. Combined with previously analyzed deficiencies, our deficiency screen has covered approximately 70% of the X chromosome. We conclude that the regions covered by the available deficiencies on the X chromosome do not include any myogenic locus required for body-wall muscle formation. Alternatively, the possibility that nullo-X embryo may not form body-wall muscle due to a general failure to differentiate during embryogenesis remains to be tested.