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A Study on the Tank-Attack Helicopter Duel

Abstract

In this paper, we consider a two-person zero-sum game in which an attack
helicopter with a missile wishes to destroy a tank. The tank has much small-caliber
ammunition for protecting itself from the attack helicopter. And the attack helicopter
possasses a missile for attacking the tank. We develop mdels for the behavior of
the attack helicopter, in terms of missile launch time, and of the tank, in terms of
ammunition firing rate, in several situations. In particular, we examine the Weiss-—

Gillman model.
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1. Introduction

This research is directed toward finding saddle point coordinate strategies for
extensions of the classical unfair silent duel. The principal contribution of this
research is the analysis of saddle point coordinate strategies for the Weiss-Gillman
model. Prior work in this area includes the work of Weiss [8] who first
examined the unfair silent duel, in the course of munition studies conducted at the
Aberdeen Proving Ground. The interpretation of this problem as an advertising
competition was considered by Gillman [3]. The work of Blackwell and Shiffman [1]
also is related to the optimal strategies for the players. Karlin [5] alsc has

addressed this porblem, but with a slightly different formulation.
Model Assumptions and Notation

Consider a situation where Player [, an attack helicopter, is attacking a tank,
Player II, from initial range R. Player [ is armed with one missile, possessing
lethality function F(r) decreasing on [0, R], presumably from near 1 to near 0. The
tank is armed with a great weight(say, A ozs.) of armament, with lethality function
p(r), also decreasing to near zero on [0, R]. p(r) is to be thought of in these terms:
When da ounces of ammunition are expended by Player II at range r, there results
the probability p(r)da that the attack helicopter is killed.

A strategy for Player I is a cumulative distribution function ¢ (r) on [0, R] giving
the probability distribution from which the helicopter initially selects its firing range.
A strategy for Player II is the ammunition distribution density 7(r) according to
which Player I plans to distribute the ammunition store A over [0, R], with 7

(r)dr=da, the number of ounces da allotted to the range interval dr, satisfying
R
fo (dr<A.
The objective function M(o, 7) is first taken to be the probability that Player I is



killed, computed as

Mo, 9= [ Fnexp{~ [ A9 dde]dot ),

R
which is not an unreasonable assessment, since f 7(s)p(s)ds is the expected
i
number of potential kills gotten off by Player II up to range r. We make the
assumption that the minimum closing range c=0, that F(R), p(R)>0, and that there

is an 7y such that

) () F()P(s)ds=A "

r OSR (2)

In essence, Equations (1) and (2) guaramtee that the candidate saddle point
coordinate strategy °(»)=—F(#)/F(NP(#) suggested by constancy-positivity is

greas enough to insure that the amount of ammunition A is expended on [0, R].
The Weiss-Gillman Model

Weiss {8] and Gillman [4] examined a somewhat more general model, with the
minimum closing range ¢ not necessarily zero, and p( ¥3) not necessarily greater

than zero.
Helicopter strategy: o(r) is the probability that the attack helicopter fires at a range

when the range is less than or equal to r.

When p( 7() =0,



N GE P( 7¢)/P(r) for ¢ <r < 7y,

1 for r > 7y
When p( ¥y = 0,
0’0(1’) : 0 for 0 <r < 7,
1 for r > 7y

Tank strategy is pure: T(r) is the rate of fire per unit range.

t%» © -F@/FOPE for ¢ <r < 7,

0 forr > 7

If both opponents adopt the optimal strategies, the probability of tank destruction is

F(7y). That is,

M (O'O,TO)=F( 7g)

2. Analysis of the Weiss—Gillman Model

Introductory Remarks

This chapter deals with the optimal strategies suggested by Weiss-Gillman for the
helicopter and tank. We re-derive these solutions, using the so-called constancy

positivity principle, as well as the Lagrangian saddle point approach to constrained



optimization. Both the constancy-positivity principle and Lagrangian saddle point
approach are in their infinite-demensional versions. In particular, we shall first see
how the tank’s optimal strategy is suggested by the constancy-positivity principle,
and then a sense in which the optimization problem involved in establishing a saddle
point solution touches on Lagrangian optimization.

In this chapter we assume that the helicopter and tank open fire at the same range

R which is at least as large as the range #(, in accordance with the previous

chapter, and the quantity p(R)>0, and F(R)>0. The first two sections below

establish candidate saddle point coordinate strategies ¢’ and z’o, under the

assumption that Z'0 is derivable by the constancy-positivity principle. The third

section below then verifies that the candidate strategies 6% and 7% do indeed

constitute a saddle point for the game in which the duel starts at range R.
We will need to consider strategies for the helicopter that are cumulative

distribution functions possessing both discrete and absolutely continuous parts.

Figure 2.1 Step Function

Purely discrete cumulative distribution functions are step functions which are
shown in Figure 2.1 indicating that the random variable being described takes on
only a ’“countable” set of values, and each of them with a certain specified
probability. Examples are the Poisson or the binomial cumulative distribution

function. Average or expectation of sin X, X Poisson, is given by



2.‘0 sin(){ A'exp(—=A)/i!}.

Purely absolutely continuous cumulative distribution functions are smooth functions
which are shown in Figure 2.2 indicating that the random variable being described is
capable of taking on a continuum of values, with any interval assigned probability
given by the definite integral of a density function over
that interval. An example is the normal cumulative distribution function, with the

familiar density

(1/V2mexp( — X?%/2)

Figure 2.2 : Absolute-Continucus Distribution Function

Averages of expectations with respect to such cumulative distribution functions are
expressed as integrals involving the density. Thus the expectation of sin X, X

normal, is given by
[ tsin®IV ZDexp( — /2.

We shall need to deal with cumulative distribution functions ¢ that are partly
discrete and partly absolutely continuous. Such cumulative distribution functions may

be thought of in at least these two ways:



pl p2 p3

Figure 2.5: Continuous Distribution Function

Thus the expectation of sin X, X distributed as in Figure 2.3, is given by
+w . .
[ tsin0lgthar+ ¥ sin(o )1 4, .
Such expectations commonly are given the Stieltjes integral designation, say
o
| sin(dat®).
We also note that, when ¢ (£)=0 for t <0, then
I r
o= [__do()= [ do() forany r=0 .

Candidate Optimal Tank Strategy by Constancy-Positivity

Principle

In this section we will see how the tank’s optimal strategy ( 2'0(7’)) is suggested

by the constancy-positivity principle.



As a cumulative distribution function with both steps and smooth portions which
can be shown in Figure 2.3. Or, in more explicit fashion, as a cumulative

distribution function equal to a weighted average

ad)=00,(D+(1—6) a.(D

of a discrete cumulative distribution function O'd(t) which can be seen in Figure
2.4, and an absolutely continuous cumulative distribution function o ,.(#) which can

be described in Figure 2.5, with density function, namely, s(9.

Averages or expectations with respect to such cumulative distribution functions are

expressed as integrals with density (1- ) s() =g(1), plus summations.
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Figure 2.3 : CDF with Steps and Smooth Portions
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Figure 2.4: Discrete Distribution Function



We begin by recalling what is meant by a positive mixed strategy. When a
matrix game is stochastically extended with respect to at least one of the players;
i.e.,, whenever one of the players’ strategies are in fact mixtures of available pure
strategies, then a mixed strategy for that player is said to be positive if it puts mass

on all of the player’s pure strategies. Thus, when the player, say the helicopter, has

a finite number of pure strategies, say ¢, 69,..., 0;,..., O, as the helicopter

would in a finite version of the duel, then the helicopter’'s strategy is positive if &,

exceeds zerc for all { i=1, 2, ---, m. Analogously, when the helicopter has a
continuum of pure strategies, as in the case of the duel studied in this paper, then a
mixed strategy for the helicopter, as given by a cumulative distribution function o (p)
on [c, R], is said to be positive if no non-degenerate sub-interval of [c, R] is
assigned zero probability under o.

When a game is stochastically extended with respect to one of the players, say

with respect to the helicopter, by the introduction of mixed strategies as above, and
the helicopter possesses a positive saddle point coordinate strategy, say o J , then

any saddle point coordinate stragegy 7y attains the saddle point payoff » in the
presence of all (pure or mixed) strategies for the helicopter if, with r indexing the
helicopter's pure strategies, M(r, 7() 1is continuous in r. This is shown by noting

first that, if g(r) is non-positive and continudus,

[ [&(Dda (1) =01 implies [g(x)=0l. @1

Then [M(o{, 7)—v=01 implies [ [m(r, z)do§(n— [vdo;(n=0]

implies [f[M(r, ro)—vldo ¢ (¥ =01, which implies that M(r, ry)—v=0 by

setting g(r)= M(7, r()— ¢ in Equation 2.1.
At any rate, then, if the helicopter does possess a positive saddle point coordinate

strategy, then, given the required continuity, it must be that any r( will satisfy



M(r, ry) = v, forall r (2.2)

which should allow us to compute a candidate 7y . This feature motivates us to

start looking for a saddle point ( gy , Ty ) by searching for a 7y satisfying

Equation 2.2. If that search is successful, gy is then hunted down by locking for a

¢ such that 7y minimizes M in the presence of o; i.e, a o such that

M(o, r))<M(o, ), for all t, (2.3)

If the search for ¢ satisfying Equation 2.3 also is successful, and leads, say, to ¢ =
0y, then ( 0y , 7() is established as a saddle point, since we already have by

Equation 2.2 that

Mo, ry)=M(o, ry), for all a.

In the situation at hand (restricting r to the interval [c, #(], with the hope that

things will fall into place by themselves on [ 7, R]), relation Equation 2.2 gives

F(expl— [ "H9) ro(9dl =1

In F(#) — f " (s) 1 ()ds=Inz

[F(N/F(N1+ K7 ro(nN=0
ro(N=—F(N/FN(N= t°(»)

We now define a candidate T by extending 7 to [c¢, R] by postulating that



(r)=0, ¥9=<r<R, and apply Lagrangian saddle point methods to finding a ¢y such

that

M(ay, t9)<M(a,y,7)
Optimal Helicopter Strategy by Lagrangian Saddle Point

In this section we will discuss how the helicopter’s optimal strategy ( ¢°(#)) is
derived using Lagrangian saddle point methods.

Our task is to find a ¢ such that

Mo, 1)— M(0,r9)=20
In other words, among the problems p,

Min M (o,7)
R
1 stk fC x)dx<A

720 on [C,R]

parametrized by o, find one, say P 4, for which 2'0 is the minimizing r:

MinM ( ¢, 9=-M ( ¢°, %) (2.4)
® dx<A
r st [ dxds<

=0 on [CR]

But the Lagrangian saddle point theory alerts us to the fact that it is sufficient for

Equation 2.4 that r° participate in a saddle point of the Lagrangian L(A, ) for



the minimization problem P ¢° ; i.e., that there be a Ap =0 such that ( Ay,

is a saddle point of

R
LA, D) =M, O+ Al fc A x)dx— Al,

for all A 20 and ¢ 20 on [¢c, R].

Thus ¢° will satisfy Equation 2.4 if there is a Ao =0 such that

R
M6, ) +3] fc H(x)dx— A)

- [ as

R R
= fc [F(n)e 1da®(n + Al L o(x)dx— Al

> M(c®, 0 +2,[ fCRz‘O(x)dx— Al

R
- [ K9 s

R R
= [(1F(e 1do"(A+ AL [ r'(xau— Al

IO ooy 4 at [ e AL,

R
> [[F(ne
c
for all A 20 and r 20 on [c, #]. But, since

R 0
fc (x)dx=A,

the second inequality is automatically satisfied with equality.

We can change the order of integration when Stieltjes integration is involved.

expected from the usual calculus, for non-negative A(.)) B(.) we have

[ B [ Awdsdn= [ A® [ Bnakna.

ro)

(2.5)



e*>1+nx.

TR 12 — (2~ 29).

e *—e > —(z—zpe .

I [e_f'%(sm][er(a(x)—ag(x))dx].
R — [ B R - Raos

fc F(7) e f'a()akdo(r) —fc F(7») e J; (Mdo(r) (2.6)

-f ® e o(ds

R
>— [[Fe 11 [ (aln)~ ag ()l .

[Faysas

— [fato-au ([ Fe " annar,

R
where B(r) = F(r) exp { - fr ao(s)ds } and A(x) = { a(x) - @y(x)}.

Equation 2.6 yields the following equation when o (r)= 00(7’) , and a)(x)= px)

%%), a(x)= p(x) o(x), with 7{x) =0 and arbitary firing schedule for the tank over

R
[c, R] , with f {x)<A.

R ~ [ "9 as
fc [F(») e Ir 1 do®(»+ A4l LRr(x)dx——A]
R ~ [ w9 s R
—- [ R e 1do"(n) +ad [ (D~ Al
R x — [ "9 as
> [Te— @ -2 [[Fy e do"() Vs

tad [ dD -l



R
- [ H9rs)as

= fCR[r(x — %01 [— (%) fo(r) e do®(P +2A,)dx, @7

where, for later reference, we define

R
- fr ()T (s)ds

cx) = —plx) f:F(r) e do"(¥)+ A,

Now we will examine the right hand side of Equation 2.7. The inequality of

Equation 2.5 will be ensured by any 0’0 and A reducing C(x) to a function equal

to zero on [¢, 7] and greater than zero on [ ¢, R ], say,

o’x) = p(ry)/p(x) onlc 7gl
1 onl ¢, R1,

and Aoy = A= Frpp(ry)=0,

since, with /10 = /10 , and repeating in part computations already done above, C(x)

becomes , for x < 7y,

- f:op(s)r“(s)ds

o = —p0) [ Ane do"(r) + 4,

- =) [P a0 42,

= —px) F(ry) ¢%x) + F(ry)p( 7y

- —p(x)F(rO)[—p;(ég—)] + F(rg) 7o)
= —F(ry) pry) + F(ry) pry) =0



and, for x 2 7y,

C(x)

Since C(x)

R
— [ o9 (9as

e CICY

do’(»

R
- fr ()7 (s)ds

—P(x)f:F(r) e do®(n+ A°

— f:op(s)ro(s)ds

R
= —p(x)fc F(7) e do’(n)+ A°

= —p(x) (7 o) 6%(r) + A,
= —F(rg) Kro) + F(ry) plry) =0,

is greater than or equal to zero, the right-hand side of Equation 2.7 is

0

greater than or equal to zero. Therefore, the helicopter’s optimal strategy o is

found such that

M( 6’0 -M (6’ %) =0 (2.8)

Verification of Candidate Tank Strategy

It remains to verify that the extended tank strategy % does in fact satisfy.

M (

00, 2y > M(ao, %)

To this end note that

R
M(a’ %) = fc F(») e do'(»)

R
- fr ()9 ds 0



~ [7 % ons)ds

= f;OF(r) e

do’(»)

do®(»)

7o " F (s
fc F(» ef, e
= [T By i

CF(r)

= F(?’()) fc 0 dgﬂ(r)

= F(ry),

4]
where f do’(v) = 1.
c

R ~ [ 9n(s)ds
M (g %) = f F(y) e J, do(?)
C
7o — (2% )p(s) ds R ~ [*e%9n(s)ds
=f F(¥ e J do(r)+f F(P) e J. do(7)
C 7’0

7y R
= f F(» 1 F;({r‘;) 1 do(n) + f F(7) do(7)

41 R
< F(ry) f do(7) +F(ro)fr do(7)

= F(To)O(R)S F(Vo) = M(O'O, Z'[J A

where the last eqality follows from ¥ rg ) =1

Therefore, M (0'0, %)y =™ (o, ! , which, together with relation of

Equation 2.8, verifies that 60 and 7° are the saddle point coordinate strategies for

the helicopter and tank respectively.



3. Early Duel Start, whit Altered Restriction

on the Tank.

This chapter suggests a saddle point coordinate strategy for the attack helicopter
with altered restriction on the tank.

Consider any s with ¢ £ s < 7y . Suppose that the set of allowed strategies

for the tank satisfy only the condition,

LR rdr < LR % Ndr ;

i.e., that the tank spends no more than the optimal amount in some early stage

of the duel. Then a saddle point of the duel is given by the pair (aS, 0 ),

where aE(r) : 0 for ¢c<r < s,
p( 7)/7) for s<r < rg,
1 for 1 2 ry,
and %) : — F'() / F() p» for c<r < 7y,
0 for r 2 7rg.

To verify that M (g, )< M( 62 s 0 ) , we can proceed as in the case

of the classical unfair silent duel.

As to verifying that M( 02 , T) =2 M( 02 , 0 ), we proceed as follows:

From Equation 2.6,

M(a?, 1) — M(a?, 20,

s



where @ ((x) p(x) r%x) and  a(x)

schedule for the tank over [c, R].

To begin with, for x = 7y,

R
— [ o9 as

[1R» e 1 do'()

R
~ [ x99 ds

- ;"F( 9 e

— 759 2 (9as

Sigacr

F (s
Fs)ds

= f:oF(r) e I

F(ry)
F(»)

= fcrOF(r) (

~[Taw-aun [ [ F e

do

1ds’(7)

f ’Ra o(S)ds

d o UM, (3.1)

p(x) 7(x), with z(x) an arbitrary firing

do (7

do’(7)

%»

~F(ry) [ aln = F(ry).

and also, forc £ s < 7y,

R
- [T %)ds

[IF» e 1 do%(r)

= [(0ds %+ [[Fn e

P " (s
= ["F(» R 00

- j""p(s) £ (s)ds

do U



= LxF(r)[ 1;((’;3) 1de U7

=F(ry) [(do AN =F(ro)a A»)

~ [T auas

andso, [ la0~ ay( [F(n e do ¥(n)dx

- f'R aqy(s)ds

= [ T~ a1 [F e do (n)dx

[ aa(9as

+ [ law— ay@I [[Fn e " " do Yl

= [ la®— as IR ro)o Ylax
R
+ [ L0~ aDUFC rolax (32)
= [oar+ [ Tan~ a0 ro)o Ylax
R
+ [ L@~ ay(DUFC rylax

< J"tat0~ aoUFC r AT 10

+ f::[a(x)— a)(DINF( 7y) p&;g) Jdx

where this last inequlity is due to the fact that [a(x)— a@¢(x)] is non-negative

on [ ry,R],

= [t~ P DUFC i 7 )

=[FC o)t ) [ ddds— [ 20 (et <0



Hence, the right hand side of Equation 3.1 is greater than or equla to zero.

That in fact shows that M(c %, —M(a?, £%)>0

Therefore, 0'2 and z? are the saddle point coordinate strategies for the

helicopter and tank respectively for our modified model.

4. Conclusion

This reseach analyzed saddle point coordinate strategies for the attack

helicopter-tank duel in several different situations. At first, the Weiss—-Gillman
model of the classical unfair silent duel is examined, with respect to the possible
extension of the class of saddle point coordinate strategies for the helicopter. It is

noted that the solutions for the Weiss—-Gillman can be obtained when the duel starts

before a certain natural range 7 ( and after 7 .
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