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An Analysis of Two-stage Manufacturing
Systems with Random Processing Times

Shie Gheun Koh* - Hark Hwang**

Abstract

This paper analyzes a system which consists of two workstations that are separated by finite buffer
storage. In this system, we assume that the processing time in each station is a random variable and each
station is not vulnerable to failure, To control the in-process inventory in the serial production system we
use the (R 1) policy which is similar to the (s, S) policy in the inventory theory. Under the (R, r) policy
the preceding station is forced down when the inventory level in the buffer reaches R and starts operation
again when the inventory level falls to r. For the model developed, we analyze the system characteristics

and the system performances.

1. Introduction

In serial production lines, workpieces pass through successive stations with specific operations being
performed at each station. A major cause of line inefficiency is unbalance of processing time at the
stations in the line. Suppose that there are no storage buffers. Then, when the processing time at
the preceding station is long, the succeeding station may be forced down, or starved, since the
preceding station is unable to feed the downstream station. Similarly, the preceding station may be
forced down, or blocked, when the processing time at the succeeding station is long and then the
station cannot remove the semiprocessed items from the upstream station. An interstation storage
buffers can be used to reduce the effect of strong interference between stations in the line, A buffer
provides temporary storage space for the preceding station when the processing time at the

succeeding station is long and it can be temporary supplier for the succeeding station when the
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processing time at the preceding station is long. Too much inventory, however, causes excessive
inventory holding cost which consists of floor space costs, material handling costs, etc.

To operate the above system, we use the (R, r) policy which is familiar in the (s, S) inventory
model. As a workpiece enters the preceding station, the station starts operating. The piece Is then
moved to the buffer and later to the succeeding station. When processing at the station is completed,
the workpiece leaves the system. In this system. the maximum permitted level R (upper control
parameter) of work-in-process between the two stations is predetermined. If the number of
workpieces in the buffer is less than R units, the preceding station continues to operate and produce
its output until R units are placed in the buffer. When the buffer is full, the preceding station stops
the operation. From the moment, the inventory level will be decreasing. When the number of items
in the buffer falls to r (lower control parameter) the preceding station restarts operating.

Such two-stage production systems have been extensively studied. Buzacott and Hanifin[2] have
presented a survey paper on related topics. Elsayed and Hwang[3], Seidmann[10] and Wijngaard[11]
studied the system with breakdowns at stations. The system of a random processing time without
failure was analyzed by Hillier and Boling[4], Hokstad[5], Ohsone[9] and Truslovel11,12]. But all
these studies deal with relatively simple control policy that has upper control parameter only.

The system with dual (upper and lower) control parameters was studied by Altick and Shieu[1],
Hopp et al[6], Hwang and Koh[7], and Koh and Hwang(8]. Altiok and Shieu[1] studied a single
stage and warehouse problem in which the stage is controlled by dual control parameter and the
producing time and the demand process are a general random variable and Poisson process,
respectively, Hopp ef al[6] deal with a system in which each station is vulnerable to failure and
materials flow like continuous fluid, Hwang and Koh[7] studied discrete material flow, random failure
and random processing time which are exponential random variables. The system with constant
processing time and random failure analyzed by Koh and Hwang[8].

In this paper, we deal with a system consisting of two perfectly reliable workstations and one
interstation storage buffer which is controlled by (R, r) policy. We assume that the processing time
at the preceding station is a general random variable and Erlang random variable for the succeeding
station.

Considering the processing time of the preceding station as the interarrival time, the buffer storage
as the waiting room, and succeeding station as the server, the problem with upper control parameter
only is the same problem as a single server queueing systems (GI/E./1 queue) with a finite waiting
room and switch-off arrival process when the capacity of the queue is full.

Using the supplementary variable and the phase technique, we investigate the system with (R r)
control policy, or equivalently, GI/Ex/1 queue with finite waiting room which is controlled by dual

control parameters.



#0294 1%  An Analysis of Two-stage Manufacturing Systems with Random Processing Times 61

2. Model Development

2.1 Assumptions and Notations

The system consists of two stations that are separated by a finite storage buffer. Although the
stations are not vulnerable to failure, they cannot produce workpieces in two cases as follows:

1. No pieces are available to the succeeding station. In this case, we will say the station is starved.

2. If the preceding station completes its production when the inventory level in the buffer is R, the

station cannot start new job until sum of the parts in the preceding station (0 or 1) and the
buffer (0 through R) falls to restarting point r (0<r<R). In this case, we will say the preceding
station is blocked.

We assume that, on the other hands, the raw material is always available to the preceding station
of the production line, that is, the preceding station can never be starved, and the completed
workpieces at the succeeding station can always be deposited into a storage of infinite capacity, that
is, the succeeding station cannot be blocked.

It is assumed that processing times at the preceding station is independent and identically
distributed nonnegative random variables having a distribution function F(x) (x=0) with probability

density function f(x) (x=0) and mean E(X). For notational convenience, we define

F ()= 1—F (x), =0,
and

h(x) = f(x)/ F (%), x=0.

And let T be the elapsed time since the last input to the preceding station at an arbitrary

moment.

The total time a workpiece spends in the succeeding station is a random variable distributed
according to the k-phase Erlang distribution with the p.df.
(B)® w1 | -
g(x>= (k_l)' xk ! e k,LD.’.
Since the staying time of a workpiece in the succeeding station is the k-phase Erlang random

variable, the time for each workpiece can be decomposed into k& independent phases which are

distributed exponentially.
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Let @ be the steady-state number of workpieces in the buffer plus the number of workpieces in
the succeeding station (0 or 1), M the number of workpieces in the preceding station(0 or 1) and
the buffer, N the number of phases that the succeeding station has to process in the buffer and in
itself, and J the number of phases remaining in the succeeding station for a workpiece in process,

Then we have the relation
N= (Q-1Dk + J,if 1 SQ=<R+1,
0, if Q=0.

Now we define the system states which perfectly define the system and which have two forms
according to the condition of the preceding station.
1) When the preceding station is not blocked.
(N, T), where N = 0, 1, .., (R+1)k and T>0,
2) When the preceding station is blocked.
[M, J], where M = r+1, r+2, .. R+l and J = 12 ..k

2.2 Steady State Probabilities

Define, when the preceding station is not blocked, the steady-state joint distribution of the number
of phases present in the buffer and the succeeding station and the elapsed time since the last input

to the preceding station as
Pix)dx = Pr{N =n,x <T x+dx}, forx > 0 and n = 0, 1, ..., Rk+k,
and the marginal distribution of the number of phases present as

p= Pr{N = n}

= fompn (x)dx, forn = 0, 1, ... Rk+k

And let, when the preceding station is blocked, the jint distribution of the number of workpieces
in the buffer and the preceding station and the number of phases fo be processed on the succeeding

station for the workpiece in process be

an() =PiM =m J =} form = rtl, r+2, ., R+land j = 1, 2. k.
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and the marginal distribution of the number of phases to be processed on the succeeding station

for the workpiece in process be

m= Pr{M = m}

k .
=Z}.=lqm(1), for m = r+1, ..., R+1.
Then we have for x » 0 that

L o) + blpo() = k ppa(), (L)
ilx“pn(x) + {h(x) + kpa(x) = k ppes1(x), for n = 12, . .Rk+tk-1, (2)
L ) + (D) + kim0 = O (3)
k papa() =k papa(FD+ [Th(0prefx)dx, for j = L 2 .. k alk+1) = 0. (4)

and
gm() = am(A#1) and qu(k+1) = qua(l), form = r+l, r+2, .. R ;=12 ..k (5

Also we have the boundary conditions

pa(0) =0, forn =01, .. k-1, (6)

pn(0) = [ h(0pus(x)dx, forn = k k+l... Rtk but n # rk+k )
and

pel0) = [ h(x) pal®dx + kot ara(D), (8)

The normalizing condition

S pawax + TS q,() = 1 )
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should be imposed on this probability distribution.

It can be shown inductively that the general solutions of the system of linear differential equations

(1) and (2) are given by

!F(x)[co - Zfo”"'cmEjzo(kux)’e'““/z!], forn =0,

pa(x) = (10)
' le ™ F@Y """ (kux)'c,., /it, forn =1,... Rk +
where ¢; (/ = 0,...Rk+k) are constants to be determined.
Letting x = 0 in (10), we can easily get that
Rk +k
oa(0) = 1S~ 2y € forn=0, -
c,,forn=1, ..., Rk +£. L
From (6) and (11),
(- =0
and
(12)

& =0, forn=1, ., k1.

Now let us define that for j = 0.1,..., Rk+k-1,

F* j(S) = j:xjf(x)e'“dx

and
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then

fowh(x) p.{x)dx = fow e M) ﬁék‘"M C ntidx

7!

=2 Rerh—n_(kus) cn+,f0 x' e f(x)dx

=0 7!

— 5 Rkth—
=220 4 Catie

Therefore from (4) we find
are1()) = qR+1(j+1)+71#2 K25 Cretiti 8, . for j=12..k

and
qr+1(k+1) = 0,

And from (7),

Rk +k -1
jco Y. Cwb,, forn =k,

Pu(0) = Rk +2k-n
Zi=o Co 4, forn=k+1,..,Rk +kbut n #rk +k.

From (5) we can put that

q = qu(), for m=r+l, r+2, .. R and j=1, 2, .. &
q = qra(l).

Thus, from (8)

D (0= gaﬁl)kC ers B0+ kug.
But we know that

fkiokfo D, (x)dx =f0 = 20 . (0ax

= fow co F(x)dx
= COE(X)

(14)

(15)

(16)

a7

(18)

(19)
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And from (15) one can show inductively that

| R+1(j)=_l 220 ¢ s 04, forj=1,... k, (20)
ku
and
q = gg+1(1)
k
= —kl,u Zi:l Rk+i9i—1 (21)
Now we are able to derive a system of equations to determine ¢, ;i = 0. 1, ... Rk+k But from

(12) we know that ¢=0, for | = 1, 2, ... k-1. Therefore we have the following system of equations

with Rk+2 variables, From (12), (16) and (18), we have, for 0{(R,

R+ & —
CO_Z i=k C,'_O,

(22)
co— cp— 2 PLF9., c,=0, (23)
Ca= X EY 6 imnes €i=0,for n=k+1h+2, 2k, (24)
Ca= 2 EEL 6 ilnve ci=0, for n=2k. Rk+k but nrkrk, (25)
and
Coib— 2 kb iin ci—2 k16, C re+i=0. (26)
In two extreme cases, equation (26) should be changed as follows:
DIfr=0(thatis rk + k = k)
Com =T F0,, ci+ D 21021 ¢ pesi=0. (27)
2) If r = R (thatis rk + k = Rk + &),
Crii— 2 2ok b i~ 3 P10 cryi=0. (28)

It is well known that the above system of equations has a redundant equation and one equation
has to be changed with the following normalizing equation:
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E(X)Cﬁﬁ R {((R=NkO _gr_1+ 228716 Jeim (29)

After calculation of ¢, we can derive the probability distribution of the system states as follows:

P, = fow D o (x)dx

=f0 e T F(x)Z ffk_“M C o4 idx

0 1l
r (30)
R e T A R X P
=k—1ﬂ2 Reek=n o (1= §,), for n=1,2,..., Rk+#
and
o A i o s —
Do = 00f0 Fa—Z EF e = }=o—%'~f£)— fo e * x'F (x)dx
) 31)
=E(X) co—-—klz S B i T o1 6.
And for the blocking states,
ara(j) = k—lﬂ A G pmegei 00 fori= 12 .k (32)
am(j) = —,};2 k  Cri; 0,y form=r+l, . Randj=12 ..k (33)

2.3 Performance Measures

Once the steady state probabilities are calculated, we can derive several performance measures as
follows:

1) Utilization ratio of each station (e1 for the preceding station and e; for the succeeding one)

o= = Mk, (30
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k+ R+1 k .
D YN D Y YW Q)

=1-p (35)
2) System productivity
R R+1
P=rlu {zn=opnk+l +Zm=”1qxn(1)}

i R-r+1
= ku {Zn=opnk+1 t(R-r+ )q}, where q = qg1(1) (36)

3) Average work-in-process in the buffer

T =% 1§=1 n ¥ f=1 P owm+i + 2 }1'?x1+=17+1 m 3 ;"!=1 a ..
(37)
=X e Dt (RADT L o () +(R— 9 (R+ r+1)kq/2

2.4 Some Examples
(1) Exponential / Exponential case

Assuming that the processing time of the preceding station follows exponential distribution with

mean 1/A and k, phase number of the Erlang distribution, is one, it is clear that:

_| Ae ¥ x>0,
f(x)—{ 0,elsewhere ° (38)
F*fs) = jiA/(s+2 )/ "L (39)
and
$, =’ /(uen)d (40)

(2) Erlang / Erlang case
For the case when the processing time of the preceding station follows b-phase Erlang distribution

with mean 1/A, we have that:

P
_(_(SLEA_I)L! xo1 eﬁw,xﬂ),
f ()= 0, elsewhere,
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{1 +sr@ny”
F*i(s) = (6A) I1..6+D. (42)

and

{1 + s/ @M} (k_,u]’ 1
5, = I [I.6+D (43)

(3) 3-para. Erlang / Erlang case

The processing time of preceding station is a random variable with the following p.d.f:

s
J———((M) (x— V)3 le O xS v 20,
fx) = 36—~
lO, elsewhere , (44)
R AN 6 B 1 ¢-)) B &
F )( S) e 2 1=0( Z) (SA) 1(8_'_2) H 1=0(6+ Do (45)

and

v (1 k(D) "

AG—12)! (83 (8+2)

¢ i= (k/l)j e_”k” 2 {':0 H 5:0(6*‘ l) (46)

3. Numerical Results

In this section, we describe the behavior of the model, in terms of productivity and average
work-in-process inventory. In other words, we observe the effects of some system parameters (A, n
and buffer size) to the system performance (productivity and average inventory level). Observing the
effects, we use 3-parameter Erlang distribution as the processing time of the preceding station.

The results are depicted in Figures 1, 2, 3, and 4. In these figures, one parameter was varied over
a range, while all other parameters were held constant. We set ¥ =10, ¢ =1, 4 =10, k=3, &
=0.5, R=20, and r=10 as the standard values.

Figure 1 shows that as 4 and g increase, that is, the average processing time of each station
decreases, system productivity increases. But the system productivity does not increase when g is

greater than 0.5, that is, the average processing time of the succeeding station is less than 2, since
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the average processing time of the preceding station is 2 (= v + 1/4 ). By the similar reason, the
system productivity does not increase when A is greater than 1.

The graphs of the average work-in-process are plotted in Figure 2. The figure shows that as A
increases (the processing time of the preceding station decreases), the average work-in-process I
increases. On the other hand, as / increases (processing time of the succeeding station decreases),
I decreases,

Figure 3 and 4 show that system productivity and the average inventory level increase as the
buffer capacity R (we set r as R/2) increases, In these figures, we can find that the system
productivity has little changes at relatively high values of R while the average inventory level is
directly proportional to the buffer size R. This says that the increment of the inventory holding cost

is greater than the increment of productivity when the buffer size is relatively large,

0.8
: +—Ae f } : ' +
0.4
P
0.2r '/
0.0t~ : ' ' e — ' : 1 ' f

01 02 03 04 05 06 07 08 0.9 1 1.1 12

—— A —— U

Figure 1. Effects of A and « to the system productivity
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Figure 2. Effects of A4 and # to the average inventory
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Figure 3. Effects of buffer size to the system productivity
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Figure 4. Effects of buffer size to average inventory

4. Conclusions

We studied a two-stage production line system in which each station is absolutely reliable but has
random processing time. We assume the processing times of the preceding station and the succeeding
station follow a general distribution and k-phase Erlang distribution, respectively. Using supplementary variable
and phase technique, the system was analyzed.

The system can be considered as an approximation to a system in which each station has
deterministic processing times and random failure and repair since the total time a workpiece spends
in a station, including any necessary repair time but excluding blocking or starving time. can be

considered as another random variable,
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