Abstract
We design the single mode dispersion-compensating fibers (DCF) which may be necessary for upgrading the previously installed 1.31 ${\mu}{\textrm}{m}$ optical communication system to the 1.55 ${\mu}{\textrm}{m}$ system. To obtain the optimum index profile that allows large negative dispersion at 1.55 ${\mu}{\textrm}{m}$, parabolic-index, double-clad fibers are analyzed by applying the 1-D FEM to the scalar wave equation of optical fibers. In constideration of macro-bending loss, the fibers are designed so that the cutoff wavelength of the $LP_{01}$ mode is greateer than 1.80 ${\mu}{\textrm}{m}$. The computer simulations show that the lower bound of the dispersion at 1.55 ${\mu}{\textrm}{m}$ is limited to about -120 ps/nm . km for the fiber index profiles satisfying the $LP_{01}$'s cutoff condition.
기존의 .lambda.=1.31.mu.m에서 분산 최적화된 광통신시스템을 .lambda.=1.55.mu.m 광전송시스템으로 향상시키는데 필요한 분산보상 단일모드 광섬유(DCF)를 설계하였다. 총분산이 .lambda.=1.55.mu.m에서 큰 마이너스 분산치를 갖는 굴절율 분포를 얻기 위해 포물선 분포-이중클래드 광섬유의 분산특성을 해석하였다. 광섬유 스칼라 파동방정식으로부터 분산특성을 얻기 위해 1차원 유한요소법을 적용하였다. Reel에 감긴 DCF의 macro-bending에 의한 손실을 적절히 제한하기 위해, L $P_{01}$모드의 차단 파장이 .lambda.=1.80.mu.m이상이 되도록 설계하였다. 이 조건에 맞는 굴절율분포의 .lambda.=1.55.mu.m에서 분산의 하한치는 약 -120 ps/nm.km정도로 제한됨을 볼 수 있었다.다.