DOI QR코드

DOI QR Code

Rigorous coupled-wave analysis of antireflective surface-relief gratings

  • 투고 : 1997.01.29
  • 발행 : 1997.03.01

초록

Rigorous coupled-wave analysis (RCWA) with a simplified eigenvalue problem is used to investigate the an-tireflective property of one-dimensional surface-relief gratings such as binary gratings, triangular gratings and gratings with triangle-like surface profiles. The convergence of RCWA is investigated by varying the number of layers and the number of space-harmonics used in the computation. For unpolarized light normally incident on a medium of refractive index 1.64 from vaccum, a triangle-like grating shows the reflectivity of $1.6 {\times} 10^{-4}$ in contrast to a minimum reflectivity of $3.8 {\times} 10^{-3}$ for a binary grating. We also study the dependence of reflectivity on the wavelength, and on the angle of incidence for a groove shape and depth which result in minimum reflectivity.

키워드

참고문헌

  1. R. Petit, Ed., Electromagnetic Theory of Gratings, Topics in Current Physics, Vol.22 (Springer-Verlag, Berlin, 1980)
  2. T. K. Gaylord and M. G. Moharam, 'Analysis and Ap-plications of Optical Diffraction by Gratings,' Proc. IEEE 73, 894-937 (1985) https://doi.org/10.1109/PROC.1985.13220
  3. D. Maystre, Selected papers on diffraction gratings, SPIE Milestone Series Vol. MS83 (SPIE, Bellingham, 1993)
  4. E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, 'Rigorous coupled-wave analysis and applications of grat-ing diffraction,' in Diffractive and Miniaturized Optics, Crit-ical Reviews of Optical Science and Technology Vol. CR 49, S. H. Lee, ed. (SPIE, Bellingham, 1993) pp.3-31 https://doi.org/10.1117/12.170183
  5. D. H. Raguin, S. Norton and G. M. Morris, 'Subwavelength structured surfaces and their applications,' in Diffractive and Miniaturized Optics, Critical Reviews of Optical Science and Technology Vol. CR49, S. H. Lee, ed. (SPIE, Bellingham, 1993) pp.234-261
  6. P. Kipfer, M. Collischon, H. Haidner, and J. Schwider, 'Subwavelength structures and their use in diffractive op-tics,' Opt. Eng. 35, 726-731 (1996) https://doi.org/10.1117/1.600640
  7. W. H. Southwell, 'Pyramid-array surface-relief structures producing antireflection index matching on optical sur-faces,' J. Opt. Soc. Am. A8, 549-553 (1991) https://doi.org/10.1364/JOSAA.8.000549
  8. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, 'Antireflection surfaces in silicon using binary optics tech-nology,' Appl. Opt. 31,4371-4375 (1992) https://doi.org/10.1364/AO.31.004371
  9. T. K. Gaylord, W. E. Baird, and M. G. Moharam, 'Zero-reflectivitv high spatial frequency rectangular-groove dielectric surface-relief gratings,' Appl. Opt. 25, 4562-4567 (1986) https://doi.org/10.1364/AO.25.004562
  10. Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, 'Antireflection effect in ultrahigh spatial-frequency hol-ographic relief gratings,' Appl. Opt. 26, 1142-1146 (1987) https://doi.org/10.1364/AO.26.001142
  11. E. N. Glytsis and T. K. Gaylord, 'Antireflection surface structure: dielectric layer( s) over a high spatial-frequency surface-relief gratings on a lossy substrate,' Appl. Opt. 27, 4288-4304 (1988) https://doi.org/10.1364/AO.27.004288
  12. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, 'Homogeneous layer models for high- spatial-frequency dielectric surface-relief gratings: conical diffraction and an-tireflection designs,' Appl. Opt. 33, 2695-2706 (1994) https://doi.org/10.1364/AO.33.002695
  13. D. H. Raguin and G. M. Morris, 'Antireflection struc-tured surfaces for the infrared spectral region,' Appl. Opt. 32,1154-1167 (1993) https://doi.org/10.1364/AO.32.001154
  14. D. H. Raguin and G. M. Morris, 'Analysis of an-tireflection-structured surfaces with continuous one-di-mensional surface profiles,' Appl. Opt. 32, 2582-2598 (1993) https://doi.org/10.1364/AO.32.002582
  15. E. B. Grann, M. G. Moharam and D. A. Pommet, 'Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings,' J. Opt. Soc. Am. A 11, 2695-2703 (1994) https://doi.org/10.1364/JOSAA.11.002695
  16. E. B. Grann, M. G. Moharam and D. A. Pommet, 'Optimal design for antireflective tapered two-di-mensional subwavelength grating structures,' J. Opt. Soc. Am. A12, 333-339 (1995) https://doi.org/10.1364/JOSAA.12.000333
  17. E. B. Grann and M. G. Moharam, 'Comparison between continuous and discrete subwavelength grating structures tor antireflectjon surfaces,' J. Opt. Soc. Am. A13, 988-992 (1996) https://doi.org/10.1364/JOSAA.13.000988
  18. M, G, Moharam and T. K. Gaylord, 'Diffraction analysis of dielectric surface-relief gratings,' J. Opt. Soc. Am. 72, 1385-1392 (1982) https://doi.org/10.1364/JOSA.72.001385
  19. M. G. Moharam and T. K. Gaylord, 'Three-dimensional vector coupled-wave analysis of planar-grating diffraction,' J. Opt. Soc. Am, 73, 1105-1112 (1983) https://doi.org/10.1364/JOSA.73.001105
  20. M, G. Moharam, 'Coupled-Wave Analysis of Two-di-mensional Dielectric Gratings,' Proc. Soc. Photo-Opt. In-strum, Eng. 883, 8-11 (1988)
  21. S. T. Han, Y. Tsao, R. M. Walser, and M. F. Becker, 'Electromagnetic scattering of two-dimensional surface-re-lief dielectric gratings,' Appl. Opt. 31, 2343-2352 (1992) https://doi.org/10.1364/AO.31.002343
  22. D. Cho, 'Eigenvalue problem pertaining to the rigorous three-dimensional vector coupled-wave analysis of dif-fraction from surface-relief gratings,' Hankook Kwanghak Hoeji 5, 439-444 (1994)
  23. netlib, Oak Ridge National Laboratory, Oak Ridge, TN, U.S.A.
  24. L. Li and C. W. Haggans, 'Convergence of the coupled-wave methods for metallic lamellar diffraction gratings,' J. Opt. Soc. Am. A10, 1184-1189 (1993) https://doi.org/10.1364/JOSAA.10.001184

피인용 문헌

  1. 2D simulation of the enhancement effect for DSSCs by using the micro-air hole in substrate vol.324, 2014, https://doi.org/10.1016/j.optcom.2014.02.049