DOI QR코드

DOI QR Code

Bi-directional energy transfer process in Er3+-Tm3+-codoped fluorozirconate glasses

  • Cho, Woon-Jo (Photonics Research Center, Korea Institute of Science and Technologty) ;
  • Kim, Myong-Wook (Photonics Research Center, Korea Institute of Science and Technologty) ;
  • Kim, Snag-Hyuck (Photonics Research Center, Korea Institute of Science and Technologty) ;
  • Jo, Jae-Cheol (Photonics Research Center, Korea Institute of Science and Technologty) ;
  • Choi, Sang-Sam (Photonics Research Center, Korea Institute of Science and Technologty)
  • Received : 1997.02.18
  • Published : 1997.03.01

Abstract

Energy transfer direction in $Er^{3+}-Tm^{3+}$-codoped fluorozirconate glasses has been studied. For $Er^{3+}-Tm^{3+}$-codoped glasses, the dependence of the green emission intensity on the pump power (Pex) of 800 nm has ranged from (Pex)$^2$ to (Pex)$^3$. From this multistep absorption, a 1.48 $\mu m$ emission from the $^3F_4{\rightarrow}^3H_4$ transition on Tm$^{3+}$ ion has been found to transfer into $^4I_{13/2}$, $^4I_{9/2}$ and $^4S_{3/2}$ on $Er^{3+}$ ion. In case of the 1.06 $\mu m$ pumping, the emissin ratio of $^3H_4$ level in $Tm^{3+}$ to $^4I_{13/2}$ in $Er^{3+}$ showed that the amount of the energy transfer from $Tm^{3+}$ into $Er^{3+}$ increased with the increasing concentration of $Tm^{3+}$ ion. Our two kinds of pumping scheme suggest that the direction of dominant energy transfer between $Er^{3+}$ and $Tm^{3+}$ should be dependent on whether the $^3F_4$ level resonates in $Tm^{3+}$ the level or not.

Keywords

References

  1. B.R.Reddy and P.Venkateswarlu, Appl. Phys. Lett. 64, 1327 (1994) https://doi.org/10.1063/1.111923
  2. A.J.Silversmith, W.Lenth and R.M.Macfarlane, Appl. Phys. Lett. 51, 1977 (1987) https://doi.org/10.1063/1.98316
  3. E.W.J.L. Oomen, P.M.T. Le Gall and A.M.A. van Dongen, J. Lumin. 46, 353 (1990) https://doi.org/10.1016/0022-2313(90)90049-H
  4. D.C.Yeh, W.A.Sibley, and M.J.Suscavage, J. Appl. Phys. 63,4644 (1988) https://doi.org/10.1063/1.340117
  5. D.C. Yeh, R.R.Petrin, W.A.Sibley, V.Madigou, J. L. Adam, and M.J. Suscavage, Phys. Rev. B 39,80 (1989) https://doi.org/10.1103/PhysRevB.39.80
  6. J.C.Wright, Radiationless Processes in Molecules and Con-densed Phases (Springer-Verlag, New York, 1976), p. 239 https://doi.org/10.1007/BFb0111143
  7. L.F.Johnson, H.J.Guggenheim, T.C.Rich and F.W.Os-termayer, J.Appl. Phys. 43, 1125 (1972) https://doi.org/10.1063/1.1661225
  8. S.Arahira, K.Watanabe, K.Shinozaki and Y.Ogawa, Opt. Lett. 17, 1679 (1992) https://doi.org/10.1364/OL.17.001679
  9. W. J. Cho, M. W. Kim, J. C. Jo, S. S. Choi and S. J. Park, Jpn. J. Appl. Phys. 33, L1527 (1994) https://doi.org/10.1143/JJAP.33.L1527
  10. W.J.Cho, T.S.Hahn, S.S.Choi and K.H.Chung, Matter. Sci. Forum 32-33,361 (1988) https://doi.org/10.4028/www.scientific.net/MSF.32-33.361
  11. X.Zou, A. Shikita, H. Yanagita and H. Toratani, J. Non-Cryst. Solids 181, 100 (1995) https://doi.org/10.1016/0022-3093(94)00510-9