LIGHT-REGULATED LEAF MOVEMENT AND SIGNAL TRANSDUCTION IN NYCTINASTIC PLANTS

  • Kim, Hak-Yong (Department of Biological Chemisty, School of Medicine, University of California, Davis, CA 95616, USA)
  • Published : 1997.03.01

Abstract

Leaf movements in nyctinastic plants are produced by changes in the turgor of extensor and flexor cells, collectively called motor cells, in opposing regions of the leaf movement organ, the pulvinus. In Samanea saman, a tropical tree of the legume family, extensor cells shrink and flexor cells swell to bend the pulvinus and fold the leaf at night, whereas extensor cells swell and flexor cells shrink to straighten the pulvinus and extend the leaf in the daytime. These changes are caused by ion fluxes primarily of potassium and chloride, across the plasma membrane of the motor cells. These ion fluxes are regulated by exogenous light signals and an endogenous biolgical clock. Inward-directed K$^+$ channels are closed in extensor and open in flexor cells in the dark period, while these channels are open in extensor and closed in flexor cells in the light period. Blue light opens the closed K$^+$ channels in extensor and closes the open them in flexor cells during darkness. Illumination of red light followed by darkness induces to open the closed K$^+$ channels in flexor and to close the open K$^+$ channels in extensor cells in the light. The dynamics of K$^+$ channels in motor cells that are controlled by light signals are consistent with the behavior of the pulvini in intact plants. Therefore, these cell types are an attractive model system to elucidate regulations of ion transports and their signal transduction pathways in plants. This review is focused on light-controlled ion movements and regulatory mechanisms involved in phosphoinositide signaling in leaf movements in nyctinastic plants.

Keywords

References

  1. Am. Rev. Plant Physiol v.32 Mechanisms of control of leaf movements Satter, R. L.;A. W. Galston
  2. Chronobiologia v.2 Pfeffer's views on rhythms Bunning, E.;M. K. Chandrashekaran
  3. Botanica Acta v.101 Light- and clock-controlled leaflet movements in Samanea saman. A physiological, biophysical, and biochemical analysis Satter, R. L.;M. J. Morse;Y. Lee;R. C. Crain;G. G. Cote;N. Moran
  4. Planta v.178 Effects of white, blue, red light and darkness on pH of the apoplast in the Samanea pulvinus Lee, Y.;R. L. Satter
  5. Annu, Rev. Plant Physiol v.34 The biology of stomatal guard cells Zeiger, E.
  6. Planta v.179 Light-promoted changes in apoplastic $K^+$activity in the Samannea saman pulvinus, monitored with liquid membrane microelectrodes Lowen, C. Z.;R. L. Satter
  7. Proc. Natl. Acad. Sci. USA v.78 Apoplastic transport of ions in the motor orgen of Samanea Campbell, N. A.;R. L. Satter;R. C. Garber
  8. Plant Physiol. v.94 Interaction of the depolarization-activated $K^+$ channels of Samanea saman with inorganis ions : A patch-champ study Moran, N.;D. Fox;R. L. Satter
  9. News Physiol. Sci. v.11 Signal transduction and cell volume regulation in plant leaflet movements Moran, N.;Y. G. Yueh;R. C. Crain
  10. Plant Cell Physiol. v.29 Outwardrectifying $K^+$ channels in stomatal guard cell protoplasts Hosoi, S.;M. Iino;K.-I. Shimazaki
  11. Proc, Natl. Acad. Sci. USA v.88 Inward-rectifying $K^+$ channels in guard cells provide a mechanism for lowaffinfity $K^+$ uptake Schroeder, J. I.;H. H. Fang
  12. Proc. Natl. Acad. Sci. USA v.84 Voltage dependence of $K^+$ channels in gurad cell protoplasts Schroder, J. I.;K. Raschke;E. Neher
  13. The pulvines: Motor organ for leaf movement The role of ion channels in osmotic volume changes in Samanea motor cells analysed by patch-clamp methods Moran, N.;R. L. Satter(ed.);H. L. Gorton(ed.)T. C. Vogelmann(ed.)
  14. Nature v.318 Blue light activates electrogenic ion pumping in guard cell protoplasts of Victa faba Assmann, S. M.;L. Simoncini;J. I. Schroeder
  15. J. Memb. Biol. v.114 Calcium ion and turgor regulation in plant cells Okazaki. Y.;M. Tazawa
  16. Planta v.186 Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of gurad cells of Victa faba L Cosgrove, D.J.;R. Hedrich
  17. Proc. Natl. Acad. Sci. USA v.87 Repetitive increases in cytosolic $Ca^{2+}$ of guard cells by abscisic acid activation of nonselective $Ca^{2+}$ permeable channels Schroeder, J. I.;S. Hagiwara
  18. Nature v.338 Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells Schroeder, J. I.;S. Hagiwara
  19. Ph.D. Thesis, The University of Connecticut Involvement of inositol phospolipid metabolism in regulation of turgor in Samanea pulvinar cell Kim, H. Y.
  20. Plant Physiol. v.67 The effects of the blue and far red light on rhythmic leaflect movements in Samanea and Albizzia Satter, R. L.;S. E. Guggino;T. A. Lonergan;A. W. Galston
  21. Nature v.255 Rhythmic and phytochrome-regulated changes in transmembrane potential in Samanea pulvini Racusen, R.;R. L. Satter
  22. Science v.260 Potassium channels in Samnea saman protoplasts controlled by phytochrome and the biological clock Kim, H. Y.;G. G. Cote;R. C. Crain
  23. Plant Physiol. v.99 Effects of light on the membrane potential of protoplasts from Samanea saman pulvini : involvement of $K^+$ channels and the $H^+$-ATPase Kim. H. Y;G. G. Cote;R. C. Crain
  24. J. Gen. Physiol. v.64 Potassium flux and leaf movement in Samanea saman.1. Rhythmic movement Satter, R. L.;G. T. Geballe;P. B. Applewihte;A. W. Galston
  25. Nuc. Acids Res. v.13 Analysis of cloned cDNA and genomic sequences for phytochrome : complete amino acid sequences for two gene products expressed in etiolated Avena Hershey, H. P.;R. F. Barker;K. B. Idler;J. L. Lissemore;P. H. Quail
  26. Biochem. Biophys. Res. Commun. v.169 The effect of phytochrome action on the activity of cytocolic cholinesterase in oat cell Kim, H. Y.;T. I. Kim;H. K. Kim;Q, Chae
  27. Science v.268 Phytochromes : Photosensory perception and signal transduction Quail, P. H.;M. T. Boylan;B. M. Parks;T. W. Short;Y. Xu;D. Wagner
  28. Photomorphogenesis in plants (2nd ed.) Assembly and properties of holephytochrome Furuya, M.;P.-S. Song;R. E. Kendrick(ed.);G. H. M. Kronenberg(ed.)
  29. Photomorphogenesis in plants (2nd ed.) The phytochrome chromophore Rudiger, W.;F. Thmmler;R. E. Kendrick(ed.);G. H. M. Kronenberg(ed.)
  30. Photomorphogenesis in plants (2nd ed.) Distribution and localization of phytochrome within the plant Pratt, L. H.;R. E. Kendrick(ed.);G. H. M. Kronenberg(ed.)
  31. Nature New Biol. v.245 Particlebound phytochrome from maize and pumpkin Quail, P. H.;D. Marme;E. Schafer
  32. Photomorphogenesis on plants(2nd ed.) Signal transduction in phytochrome responses Roux, S. J.;R. E. Kendrick(ed.);G. H. M. Kronenberg(ed.)
  33. Plant Physiol. v.102 Transduction of bule-light signals Kaufman, L. S.
  34. Photomorphogenesis in plants(2nd ed.) Properties and transduction chains of the UV and blue light photoreceptors Hirwitz, B. A.;R. E. Kendrick(ed.);G. H. M. Kronengerg(ed.)
  35. Photochem. Photobiol v.48 The role of pterins in the photoreception and metabolism of plants Galland, P.;H. Senger
  36. Photochem. Photobiol. v.34 A blue light-sensitive cytochrome-flavin complex from corn coleoptioes : further characterization Leong, T.-Y;R. D. Vierstra;W. R. Briggs
  37. Proc. Natl. Acad. Sci. USA v.88 A blue-light activated GTP binding protein in the plasma membranes of etiolated peas Warpeha, K. M. F.;H. E. Hamm;M. M. Rasenick;L. S. Kaufman
  38. Science v.263 Surprising signals in plant cells Jones, A. M.
  39. Nature v.361 Inositol trisphosphate and calcium signalling Berridge, M. J.
  40. BioEssays v.16 Why do plants have phosphoinositides Cote, G. G.;R. C. Crain
  41. Ann. Rev. Plant Physiol. Plant Mol. Biol. v.44 Biochemistry of phospoinositides Cote, G. G.;R. C. Crain
  42. Plant Physiol v.109 Signal transduction in leaf movement Cote, G. G.
  43. Planta v.198 Inositol-1.4.5-trisposphate may mediate closure of $K^+$ channels by light and darkness in Samanea saman motor cells Kim, H. Y.;G. G. Cote;R. C. Crain
  44. Mol. Pharmacol. v.49 Stimulation of Ca² -dependent membrance currents in Xenopus oocytes by microinjection of pyrimidine necleotide-glucose conjugates Kim, H. Y.;D. Thomas;M. R. Hanley
  45. J. Biol. Chem. v.264 Structural determination of a cyclic metabolite of NAD with intracellular Ca² -mobilizing activity Lee, H. C.;T. F. Walseth;G.T. Bratt;R. N. Hayes;D. L. Clapper
  46. J. Biol. Chem. v.270 Chromatographic reslution of an intracellular calcium influx factor from thapsigaragin-activated Jurkat cells : evidation in Xenopus oocytes Kim, H. Y.;D. Thomas;M. R. Hanley
  47. EMBO J v.9 Ca² and nucleotide dependent regulation of voltage dependnet anion channels in the plasma membrane of guard cells Hedrich, R.;H. Busch;K. Raschke
  48. Nature v.346 Elevation of cytoplasmic calcium by caged calcium of caged inositol triphosphate indicates stomatal closure Gilroy, S.;N. D. Read;A. J. Trewavas