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Output Feedback Control for
Robot Manipulator Using Variable Structure Control
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I. Introduction

Robust state feedback control schemes for robot mani-
pulators have been developed to overcome modeling
uncertainties and/or disturbances [1]. A number of these
schemes use variable structure control(VSC) to track the
desired path for robot manipulators. Most of the work on
VSC assume that measurements of positions and
velocities are available for feedback [1]. However, the
velocity, obtained by tachometers, is easily contaminated
by measurement noise[2). One way to overcome this pro-
blem is to estimate velocity from position measurement
using observers [3],[4],[5],[6],[12]. The papers [4],[6] used
a discontinuous sliding observer with a continuous
control scheme, while [3],[5][12] used a continuous
observer with a continuous control scheme. The paper
[18} used a continucus observer with a VSC scheme. A
common theme of observer design is the use of high
gain observers which reject disturbance due to modeling
uncertainty and imperfect feedback cancellation of
nonlinearities. The VSC used in [18] is similar to the one
described in this paper, but [18] used a circular argument
in the design of the observer. In fact, [18] required the
observer gain to be greater than a function of the
estimates of the angular velocities, which itself is
dependent on the observer gain. The paper [13],
motivated by [8], that the specially scaled observer with
globally bounded VSC can reject disturbances due to
modeling uncertainty and imperfect feedback cancellation
of nonlinearity. Motivated by the study of a 2 DOF
manipulator control problem, the controller design is
slightly different than the design of [13]. Uncertainty on
the input coefficient matrix differs from that of the paper
[13], so is the design of controller.r We show, via an
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example, that the current controller is less conservative
than that of [13]. To illustrate the performance of the
controller, we consider the tracking control of a 2 DOF
manipulator with unknown payload, but with known
payload range, and design the discontinuous controller.
To reduce chattering, a continuous approximate controller
replaces the discontinuous one. The continuous approxi-
mation reduces chattering, but results in an increase in
tracking error.

II. Manipulator dynamic model and problem statement
Consider the equation describing the dynamics of an n
DOF rigid robot manipulator [16]

H(® 8+ MO, 06+ g =1 ¢))
where f=R™ is a vector of generalized coordinates (joint
H(GeR™" is the positive definite inertia
matrix, M6, H=R" is
centripetal torques, g(#)eR” is a vector of gravitational

positions),
a vector of Coriolis and

torque, 7 is a vector of applied joint torques. The mani-
pulator model (1) has the following inherent properties
[16], which are useful in control design. For all 9= R?”,

(i) HO=H®O) 0, i) |HOI<q,

(i) M6, B dl<qgdlbl? (v) lle(Dl<q,
where ¢, ¢q. and g, are some positive constants.
Property (i) implies that H (6) always exists, and
property (ii) implies that the elements of the inertia
matrix H(6) are bounded. Property (iii) means that the
Coriolis and centripetal torques are quadratic in the
velocity 6. Property (iv) means that the gravitational
torques are bounded. Let the desired path of 6 be 68,4,
and (8,4, 8,4, 8,)=®p assume that (8, 8,)=6, and
where ®, and @, are compact subsets of R?* and R**
respectively. The objective is to design the applied
torque 7z using only joint position & such that joint
position 6 tracks the desired path 8, when the payload
is unknown, but its range is known. We use VSC to
design the torque 1.
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M. Controller design

This section is devided into three(3) subsections. The
first subsection describes a design method of hign-gain
observer and the property of a globally bounded con-
troller. We state the result through Lemma 1 in which
errors between state variables and their estimates can be
make arbitrary small while a high-gain observer rejects
disturbances during a short time period. In the second
subsection, we illustrate a design method of a globally
bounded controller and show that the controller can
satisfy the sliding mode condition after errors between
state variables and their estimates become small enough.
Using a sliding mode condition, we estabilish that the
tracking errors can be make arbitrary small in the third
subsection.
1. A high—-gain observer design and the property of gloablly

bounded controller

Introducing state variables in error coordinates,
ei=0,—04

1 2 - T 1 2 -1 T
e, =l[el,e?,...,ef " efl T, es=led e5,....es el

ei= 8,— 84, fori=1,..n and setting

the dynamic equation (1) has the following state-space
representation

e] = e

1

vl = — Bt Feies b0 D)+ ;G}(el,ﬁd)r,, 1<i<n

where F(e, 6,4 8, denotes the ith component of the
vector H '(e,+ 0 ){—Cle+ 84,e.+ 0)(es+ ) —gle + 6}
and G,‘:(el, 8, denotes the ith row and jth column entry
of the matrix H '(e,+ 6,). Notice that from property
(i), the matrix Gle,, 8,)={G e, + 6,)} exists for
Ve, + 8,€R" e=[el, ey, ...,el,el]”,
we rewrite the state equations in the compact form

e = Aet+Bl— 0,+Fle 8, 8+ Gle,, 01 (2)

After setting

where A= block dioglA,., Al A,z[g (1)

1

B= block diaglB,.....B,], B,-=[ ?],F=

Fr
C=block diag[C,,...,C,], C;=[1 0]. Let Fy(-) and
Go( *) be the known nominal models of F(-) and
G( -), respectively. From property (i), we see that
G(-) is nonsingular V(e,+8,)=R”, moreover, from
property (ii), G(-) is globally bounded. We choose
Gy(+) to have the same properties. We assume that
Fy( ) is globally bounded. This can be always achieved
by saturating the given nominal functions outside a
bounded domain of interest, as it will be illustrated later
on. Let N be an #x» matrix such that each component
of N is an upper bound on the absolute value of the
corresponding component of the matrix [G(8)G; (8 —11,
V@=R” Notice that since G(-) and G¢'(-) are
globally bounded, the matrix N is well defined.

Assumption t : The matrix [I-N] is an M-matrix.

Note that Definition of M-matrix can be found in [14].
Assumption 1 restricts uncertainty on the input coeffi-
cient matrix. To estimate the derivative of the tracking
error, e,= §— 0, we construct the observer

2= eitlai/edei—eD (3)

HO - Ris8t AXERS =2K H3 A H6s 1997 12
&5 = = Bat(@i/eN(ei= e DHPI)+ RGiL Ir,(4)

for ¢=1,,n , where all a! are positive constants, e !
is the estimate of the state variable e and ¢ is a
positive constant to be specified. We rewrite the observer
equation (3)-(4) in the compact form
e=Ae+Bl~ B,tFo( )+ G )]+ DLe—&) (D)
where
L=block diagL,..,.L,], L,=[a{ ai] T D(e) = block diaglD, (&),
. D (&), D{e)=diagll/e 1/€*] C=block diagl C},...,C,], C;
=[1 0. Let &i=ei— ¢! be the estimation error, and
define the scaled variables ¢i=(1/e?)¢&i for j=1, 2.
The closed-loop equation can be rewritten as
e = Aet+Bl— B+ Fe 8,4 §)+Gle,, 81 (6
et = (A-LOt+eBlF(e. 04, 0~ Fole 04, 02 )
+(Gle;,8)—Gol ey, 8)1]
where ¢=[¢1,¢4,..,81,¢5] T We choose the sliding sur-
face o(@)=[0,(&...,0,()]  such that s(=ejt+mici,

l1<i<n, where m i are positive constants. Rewrite o(e) as
o(e)=Me ®
where M= block diaglM,,...M,), M;=[m { 1]. Define
T=[¢}...¢7] 7, and rewrite equation (3) as
ey=Aet+ao+ Lt 9
where A=diagl—m!,....—~m[l, L= diaglal,.. e}]. Consider
a control input of the form r,=¢ e 04 84, 0+
vle 84 OJsgn(ce)) where ¢, (-)and o,(-) are
continuous and globally bounded functions. We will
specify r, later on. Let P=diag[1/(2m1),...,1/(2m7)],
and take W(e,)=e{Pe,. Notice that P is a positive
definite matrix since all m| are positive constants.
Choose the positive constants c¢,, and r such that Q,=
{eeR™ | IMdl<c,.V We)<c,) where c,,=nas/a)cy,
a1=1/2 (P, a;=201A1/VA (P, and r > 1. The set
2, 1s taken as the region of interest in our analysis.
Define
Q={ecR" | |Mdl<c .V Ve )<c,} where ¢ >c,, and
€ 17 € 2. Achieving globally bounded functions F (e, 8, 6,)
can be done by saturating F( -) outside the set 2.,x@,.
Let

2y = {(eeR™ | IMdI<c,, VWV(e)<c.},

Q, = {teR¥ | U</ e}

2 = 2,x2, (10)
where c,{c,, ¢c.{c, and c is an arbitrary positive
constant. Notice that £,CL2,. The following
states that the fast variables decays very rapidly during
a shorttime period. The proof of the lemma is the same
as the proof of Lemma 1 in [13], hence it is omitted.

Lemma 1 : Consider the singularly perturbed system
6)-(7) and suppose that the torque 7 is globally
bounded, Then, for all (e(0), £(0))eQ , there exist &,
and T,=T,(&)<T; such that for all 0<e<e;, [|4I< ke
for all t[T,,T,) where T; is a finite time and
T 4> T3 is the first time e(t) exits from the set 2,.

Remark 1 : From (6)-(7), one can observe that e(t) is
the slow variable since we use the globally bounded

lemma
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control input z while ¢ is the fast one. Lemma 1
implies that the fast variable ¢ becomes &) before the
slow variable e(t) exits the domain of interest. Lemma 1
can be established due to the use of a specially scaled
observer and a globally bounded control.
2. Sliding mode condition and a design method of globally

bounded controller

We design the control input z such that a sliding
mode condition is satisfied when [4I< % and (e, &)=
0,<0Q, This will be done by showing that o(e) T
o(e)<0 as long as o @#0. We will show o(e) Ta(e)<0
using control input t different from the control input in
[13]. This is motivated by studying a 2 DOF manipulator
control problem which is studied in the Example section.
We have

s (o) = 6'(dalde) e

6 "MAe+B(— 8,4+ Fy(e, 84 62 (1D
Gole . 0D+ (1/e) X &LCYE]
where IXe) = block diagl d,(9),..., d,(e)], d:(e)=diagle, 1].
For simplicity, we set ¢,(e, 04 8)=F(e, 8, 8,)—F,
(e,0,4, 8y and let 7=¢+e(A~LC0) 'Bp(e, 8,4, 8,).
Using the fact that IX0)LC(A—LC) "'B=—B, it can be
shown that equation (11) is given by

c(o(e) = 6 ™MAe+B(— 9,+Fy( - )+Go(+)D (12)

+ (1/8) X&) LCyp+ B ( + )+ Ke))

We need an estimate of (1/e)MIXe)LCy; to design the
control input ¢ such that the sliding mode condition is
satisfied. It can be also shown that

(1/e)MD()LCy = (1/e)MDO)L f T[‘Ce (A=LOU=dieg

* {GCHGT' ()= xGoley, 8 )r(Ddl+ Ke)

for te[T+eln(1/e), Ty where w(HeK{d(t)} for
almost all ¢ and the convex hull K{#«(H} is defined in
[9]. Define kﬁzaéf‘]wlhi,v(t)ldtZI where £ (8 is the ith
diagonal eclement of diagonal matrix Ce“ "B, for
i=1,...,n let k., be an upper bound of the absolute
Go( )z, to be

+

value of th component for vector
specified. It can be verified that
|[1/oMBOL [} ce 4 B (G0 )G ()=D6u udal] | (13)
< [KNe ],

where [ -], denotes the ith component of a vector,
K= diaglky,....ky), and k,=[k,,...,k.,]1 7. Choose the
observer gain «, such that all eigenvalues of (A-LC)
are real and negative. Then all #£,=1 [10].
inequality (13) becomes

Hence

[/ amDOL [ o= B (60-)67-)=16o khal] | (1)
< [Ne,], ‘

From properties (ii) and (iii), we can alway find a

locally Lipschitz function e e, 84 8, such that |F'(e,

b0 B)—Fi(e 04 0)<pe, 84 8, for (2,6, 8)=R,%8,

Define the constant %, by the inequality

[ 8,—M(Ae+BFy(e 8, 8)—0(e, 84 8)sgn(o)] i<k, (15)

almost everywhere for (e, 8, 84 62,6, where

o( )= diaglp (), ....0. )], sgn(o)=[sgn(s))....,sen(a )17
Notice that %, can be calculated since Fgy(-) and
o( +) are known. Define the vector

B=UI-N "' Ne,+7 (16)
where >0 is a vector such that (I—NM»>0 and
ko=[ky,...k,] 7. Since the matrix (I-N) is an M-
matrixX, such a vector y always exists [14]. Consider the
function

e, 04 04 0 = Gyl (N By~ MA—Fy( )

— (o )+ B)sgnla( e))]

where A= diag] B,..... 8,17 and B, is the ith com-
ponent of the vector B.. We take the control input : as
¢( - ), saturated outside the set 2,% @ ,. In particular, let
() = Go'( N B,—MAe—Fy(+)] and ¢,(-) =
=G o' ) p(-)+Bwhere p(-)=[p(-),.,0,( 7.
Define ‘
Simae ol )>S o
9l ) SomnSta( ) S b
Samin a0 IS wmin
Simae 450> Shmax
i) Shmins@s( )= b
()< bmin
fori=1,...,n where ¢i(-) and ¢}( -) denote the ith com-
ponents of the vectors ¢, ) and ¢,(-), respectively,

¢’le( /éx 0dv ed):

¢3(e,04, 84,d 8=

i
S bmin

S o = TEX (et Gad g‘,.eg,.on‘/’:x( e, 64 B4, 02) S amin = TN (604 04 09,0,
¢ie. 84 84, 8, Sime and S, are similarly defin-
ed. Note that since we know a domain of interest
£2,X6, before an

can calculate the values of S%, or S’, in an off-line

implementation of the controller, we

manner for an implementation. Take z,=¢%(e, 64 8.,
O)+¢3(e 8, 0Jsgnic)
Inside the set £2,x&,, we have
(- )=¢(-) 17
where o - )=[r(+),...,c.(-)]7.
quality (13) can be taken by
k,=k+ 8. (18)
Using (12), (14), (17) and (18), we obtain

66 = 6"~ ol - )sgn( o) — Bsgn(a) + (1] )MIN0)LCy
+é,()+0(e)]

< ~ 0 LB N4 B+ ek 2o)
=~ 0" 1U=N B—Ne]+ek Hlo
= - GT(I-M7+ek;|0,{

S

Hence, %, in ine-

for sufficiently small e, where o=I[lo/,...l1cJ17,
70, and k is some positive constant. We summarize our
findings in the following lemma.

Lemma 2 : Consider the singularly perturbed system
(6)-(7) with the applied torque : defined by (18).
Suppose that Assumption 1 is satisfied, [|¢|< &, and
(e, 0eQ,xQ, for t€[T,, T,), and ¢ is small enough.
Then as long as ofe)+0, the sliding mode condition
c7(e) o &)<0 is satisfied for sufficiently small e and for
all te[T +eln(1/e), Ty).

Remark 2 : The smaller value of ¢ is used, the time
T+ &(1/¢) becomes smaller. However, the time is always

definded since we use the finite value of 1/e in Lemma 1.
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3. Tracking of the desired path

So far we showed that [JdI< ke |14I< ke for tE[T,
Ts) and the torque 7 (18) satisfies the sliding mode
condition when ||gi<k and (e, eQ,xR, for all
te[T,+eln(1l/e), Ty). It is shown in [13, Lemma 3]
that for sufficiently small &, l1dI< ks and (e, ©€8Q,x 82,
for all ¢=7, where T= T ,(e)+eln(1/¢e). This allows
us to arrive at the following theorem.

Theorem 1 : Consider the closed-loop system (6)-(7).
Suppose that Assumption 1 is satisfied Let the observer
gain be chosen as in (3)-(4), all eigenvalues of (A-LC)
be real and negative, and the applied torque be chosen
as in (17). Then there exist €3>0 and a finite time t,
such that for all 0<eles, {lldi<k,VellUI<ke} Vizt,,
for some positive constants k, and k and £, defined
by (10), is an estimate of the region of attraction.

Proof : See the proof of Theorem 1 [13].

Remark 3 :
proven by a conservative way in [13]. Even if it is
calculated , the actual ultimately bounded time could be
smaller than the calculated one in a given system.

The existence of a finite time ¢, was

IV. Exampie

Fig. 1. Two link manipulator.

As an example we consider the problem of controlling
the 2 DOF planar manipulator shown in Figure 1, where
m, is the mass of each link, m, is the mass of

payload, /, is the length of each link, /. is the length
of center of mass, and I, is the moment of inertia for
each link. The matrices H(8), M(8, §), and g(8) take
the forms

_[hu(8) hi(6) n_] c8, cl+ch
HO =[5 hao) Mo o=[ < f 0T

g(6)=[ {mllcl+(m2+m;))llgcos(01)+(m2+m,)ldgcos(6]+02)]
(my+m )l pgcos(6+6)

where
hu(@)=m 4+ (mat m B+ 1%+2011 pcos(6))+ 1+ 1,

hp(8)=(ma+m )(I%+ 1,1 4c08(83) +1,

RO\ - KISsH- NARIRSt =2K RI3 A K63 1997 12

ho(@)=(my+mi%+1, and c=—(my+m )l 4sin(8,).
Let the desired path of 8,(H) and 8,(H be

0a( = —90°+52.5°(1— cos1.269)

020 = 170°—60°(1— cos1.26D,
respectively. The control task is to design the applied
torque, 1, such that &,(f and @,(# track the desired
path, 8,(8H and @ (9,
payload. We take the parameters values as m;=12.3 kg,
m,=109 kg, /,-036 m, /,=0.25 m from [17] and assume
that the range of payload is 0 kg-1.2 kg. We use the
formulas, I,=(1/12)m /% 1c1=0.18, and 1c2=(10.9(12/
2)+mll2) /(10.9+ml). Defining state variables in error
coordinates, ei=0,—04, ei= 8,— 84, i=1,2, and
set-ting e, =le} eil”, e;=le; e3l”, e=lei e; ef €317,
the state-space model is

e = Aet+Bl— 0,+F(e, 04 0, +g(ey,0)1]

respectively, with unknown

gley, 0d):H-1(61+ 04 and
Fle, 84 8)=H '(-){—C(-XNey+ 8,)—g( )}

where

00
B = block diag{ B,,B;], B,=[0 117. Take the nominal
functions Fy(-)and Gy -) when the payload is
m;=0.6 kg. The observer is constructed as e=Aé+B
[— 8,4+ F()+Gy( - )D)+Xe)LC(e— &) Wwhere L= block diag
[L,,L,],L;=[32] T, C= block diag] C\,C,], C;=[10], ™e)=
block diagl D (), D,(e)), D{e)=diag[1/e,1/e?]. The sliding sur—
faces are chosen by o,(e)=2ei+ e}, ando(e)=2e 2+ 2.
Let the region of 2, be o,={esRY IMdl<],
VW e)<0.5} where M=block diagilM,,M,], M,=[2 1], and
Ve =(eD)?+(eh? The globally bounded nominal functions

Fy(+) and Gy(-) are taken by saturating Fy( ) and
Gy -) outside the set 2, where @,={cer'l IMdis1.2,
YWa=<05). It can be verified that ~= 8:2? 8%] is the
matrix such that each component of N is the upper
bound of absolute value of the corresponding component
[Gle,+0)Gi e, +0)—1, Ve, +6,R",
moreover, the matrix [I-N] is an M-matrix.

Remark 4 : It can be verified that the maximum of
absolute values of each component of {G(-)Gy'(-)-1 is
obtained when 6,=0 for 2 link case. Using [l1,
Exercise 535], it can be easily shown that
IGC- )G ()= <1 implies that (I-N) is an M-matrix
when the matrix is constant, however, converse is not
true. As an example, consider that the range of payload
is 0-3 kg and the nominal value of G( - ) is taken when
m;=1.5 kg One can verify that &(-)Gy'(-)-
= %1k 969%2] when @,=0. One can also verify that
Assumption 1 is satisfied, but not the assumption,
NGCHG - ) =M <1, in [13].

For the comparison of controller design, we consider the
case that both assumptions are satisfied in the rest of
paper.

It can be also verified that

1 y _ 1 Y. < Y.

Foe 0 09— Fieds 001 = onte a0 7 =2
where o,(-)=0.06l(ei+ GaXei+ 82)+0.05(ei+ 84)2+0.8 and

A = block diagl A\, A,], A,.:[O 1]

interest

of the matrix
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p2( - )=0.1(el+ Badel+ 82)+0.4(e5+ 8,)%+1.6. Notice that
since we chose all eigenvalues of (A-LC) to be real and
negative, k£z;=1. It can be verified that %24=52 and
ko=103.5 in inequality (15). Hence using equation (16),
we obtain  B=[7 6717 for =[0.7 1.5]17. Define
Bu—Fo(-)—¢5(-)—¢3( ) sgn(ey) for i=1, 2, where
Fi(-)=—[H '(+)g(-)], when m,=0.6, and

S s 2 2yt Fi( )2 S bar

bie.0., ed>={2 Got F) StnS2 S5t Fh( VS S b
S i 2 eyt Fy( - )<S

u; =

_ Simax 0L )T BO St

¢ile, 8, 94):[Pi( )t Bi Shmse )+ Bi<S b
o)t BiKSmin

for i=1,2 where F{(-)=—[H'()C(-Xe.+ 8], and

Simin =

Sém = max (;y, 0',,)::{2,;19,,{2 22r+Fél(é,z9,i, 94)}

S bmin = min (€84, a',)e:z,xa,{Pi( e84, B+ é,}

S imax = max (&8, 0‘4)eg,xo,{0i(‘;v0d: B+ B4
Using the optimization toolbox of MATLAB, we
determine these maxima and minima to be Sl,.=11.34,
Slun=—7.64, SZ%.=5.1, SZ.,=—21.48, Sine=9.2,
Shuin=7.64, S%.=74.19, and S%,.,=68.6. Take the
torque r=Gg'(e, 8 )u where u=[u, u,]’. Let

i
N bmin

min (g, Ed)eg,xo,,{z 22‘+F61(2‘, 0 a ;9,1)}

2y = {(esR™ | IMd|<0.8, V Ve =<0.3},
2, = {¢=R™ | i</ &}
2= 2,x2,

where ¢i=(l/e)(ei—e¢)), ¢i=(ej—e}, =12 and
g=[¢t! ¢) €7 ¢317. According to Theorem 1, the tracking
error e is uniformly ultimately bounded. We assume a
payload of m,=1.2 kg and simulate the response for
e(0)=00200017, e0=[0000]" withe = 0.005.

Notice that the initial conditions belong to 2,x%2,.

Fig. 2. Tracking of the desired joint angles ¢, (the
solid lines are the desired joint angles and
the dashed lines are the actual joint angles).

Figure 2 shows that the actual path tracks the desired
path with small error. The tracking error can be reduced
as the design parameter ¢ is decreased. One can choose
a different controller parameters, i.e., sliding surface
=0, o, and p, to reduce a tracking time as it does in
state feedback control. Figure 3 shows that attractivity of

the sliding surfaces is achieved after errors between
tracking errors and their estimates become small enough.
One way to reduce chattering is the use of continuous
approximation of the discontinuous signum nonlinearity
[15], ie., sgn(x) is replaced by sat(x) where

1 x> u

x/pu —psx<sp

-1 x{—p

However, the continuous approximation results in uniform
ultimate boundness around origin in the state feedback
stabilization problem [7].

saf(x) =

° e o T 2 s

Estmate of Emvoret)

Fig. 3. The phase portraits of estimates of errors
e(the solid line is for (el e} and the

dashed line is for ( e2, ¢ 9).

Hence tracking error in the continuous approximation is
larger than that of the discontinuous controller. We
e0)=[0.2000]7, &0)=
[0000]7, and #=0.05 for continuous approximation.
Comparing Figure 2 and Figure 4, one can observe that
tracking error in the continuous approximation is larger
than that of the discontinuous control case.

simulate the system with

Fig. 4. Tracking of the desired joint angles @;
with continuous approximation, z=20.05 (the
solid lines are the desired the joint angles
and the dashed lines are the actual joint
angles).

Figures 5 and 6 show that chattering does not appear
in the angular velocities 6 and the control input w.
Figure 6 shows that the control input u is saturated
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during a short transient period, which is a consequence
of saturating u outside the set 2,xQ,. If we use the
control scheme in [13], it can be verified that
Ui = 84— Fi()—sat(2e 5+ Fi( )
—sat(po( + )+106) sgn (o)),
for i=1, 2. One can observe that the magnitude of the
discontinuous coefficient terms are significantly increased
if we use the control scheme in [13].

15
-

Fig. 5 Tracking of the desired angular velocities
8 .(the solid lines are the desired velocities
and the dashed lines are the actual velo-
cities).

005 01 045 0:2 0.‘25 03 0:)5 Otl 0.‘45 '0.6
Time

8 8 8

w

3 o

3
X
—

5 8 o n

2

005 01 015 02 025 03 0.‘85 0?4 0.‘46 s
Time

Fig. 6. The control input u with continuous appro-
ximation (#=10.05).

V. Concluding remark

We have designed an output feedback variable struc-
ture controller that ensures tracking of a desired path,
with arbitrarily small error, for an n DOF manipulator.
The desired accuracy of tracking can be achieved by
choosing the design parameter &. We require that the
diagonal components of (G(8)G;'(6) — 1D dominate the
off diagonal components by requiring (I-N) to be an
M-matrix. This is different from the requirement
IG(AG (6 — N <1 in [13]. We show, via an example,
that the assumption on the input -coefficient matrix
uncertainty and the corresponding controller in this paper
are less conservative than those of [13]. We also give
the complete regional analysis of the tracking problem
for n DOF robot manipulator in the presence of modeling
uncertainty. One may consider an adaptive output feed-
back scheme to achieve the same objective of this paper
since adaptive scheme give the better performance for
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state feedback control case in general when a model
contains parametric uncertainty [1]. However, the pro-
perties achieved by state feedback control does not
neccessary hold for output feedback control. Hence, the
design of adaptive output feedback controller will be
involved a lot of subjects, e.g., stability issue, robustness
issue, and parameter convergence. This can be a future
subject of research.

References
[1]  C. Abdallah, D. Dawson, P. Dorato and M. Jamshidi,

“Suvey of robust control for rigid robots”. IEEE
Control Systems, pp. 24-30, February, 1991.

[2] P. R Belanger, “Estimation of angular velocity and
acceleration from shaft encorder measurements”.
Proc. IEEE Conf Robotics Automat., pp. 585 592,
Nice, France, May, 1992.

[3] H. Berghuis and H. Nijmeijer, “A passivity approach

IEEE
Trans. Robotics and Automat., vol. 9, no. 6, pp.
740-754, 1993.

[4] C. Canudas de Wit and N. Fixot, “Adaptive control
of robot manipulators via velocity estimated feed-
back”. IEEE Trans. Automat. Contr., vol. 37 no. 8,
pp. 1234-1237, 1992.

[3] C. Canudas de Wit, N. Fixot and K. J. Astrom,
“Trajectory tracking in robot manipulators via
nonlinear estimated state feedback”. IEEE Trans.
Robotics and Automat.,, vol. 8 no. 1, pp. 138-144,
1992.

[6] C. Canudas de Wit and J. J. E. Slotine, “Sliding
observer for robot manipulators”. Automatica, vol.
27, pp. 839~ 864, 1991.

[71 F. Esfandiari and H. K. Khalil, “Stability analysis of
a continuous implementation of variable structure
control”. IEEE Trans. Automat. Contr., vol. 36, no.
5, pp. 616620, May, 1991.

[8] F. Esfandiari and K. H. Khalil, “Output feedback

Int. ]

to controller-observer design for robots”.

stabilizaton of fully linearizable systems”.
Contr., vol. 56, pp. 1007-1037, 1992.

[9] A. F. Filippov, “Differential equations with discon-
tinuous right-hand side”. Amer. Math Soc Trans—
lations, vol. 42, no. 2, pp. 199-231, 1964.

[10] S. Jayasuriya and M. A. Franchek, “A class of
transfer functions with non-negative impulse
response”. J. of Dynamic Systems, Measurement,
and Control, vol. 113, pp. 313-315, June, 1991.

[11] H. K. Khalil, Nonlinear Systems, second edition.
Prentice Hall, New Jersey, 1996.

[12] S. Nicosia and P. Tomei, “Robot control by using
only joint position measurements”. IEEE Trans.
Automat. Contr., vol. 35, pp. 1058~1061, 1990.

{13] S. Oh and H. Khalil, “Output feedback stabilization
using variable structure control”. Int. J. Contr., vol.

62, pp. 831-848, 1995.



Journal of Control, Automation and Systems Engineering, Vol. 3, No. 6, December, 1997

(14]

[15]

AL AT B Bop -

B. J. Plemmons. M-matrix characterization, “1-non-
singular M-matrices linear algebra and its Appli-
cation”, vol. 18, pp. 175-188, 1977.

J. J. Slotine and ‘S. S. Sastry, “Tracking control of
surfaces, with
Int. ] Contr,

nonlinear systems using sliding
application to robot manipulators”.

vol. 38, pp. 465-492, 1983,

255

1980 FHFdistu A 713 AL 19864
Plovtechnic University(New York) &
71 A= A Ab 1994\ Michigan State
Univ. A7] Axpzk 9kAb 19881d-1990
W, 1994d-1995d 3hd dHY |+ &
@84 o st Az FEa A
HAE Alo] Alx=d AA 2 &8

(16]

17]

575

M. W. Spong and M. Vidyasagar, “Robot dynamics
and control”. Wiley, New York, 1989.

C. Su, T. Leung and Y. Stepanenko, “Real time
implementation of regressor-based sliding mode
control algorithm for robotic manipulators”. IEEE
Trans. Ind Electron., vol. 40, pp. 71-79, 1993.



