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On the Adaptive Pre—Processing Technique for the
Linearization of Weakly Nonlinear Volterra Systems
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I . Introduction

There have been many signal processing applications
where undesirable nonlinearities might the
overall system performance [1-4]. Examples of such
applications include A/D converter, QAM radio system,
digital satellite channel, loudspeaker, etc. To design a
compensator for such undesirable nonlinear effects, the
system modelling or identification procedure has been

degrade

required. For that purpose, Volterra series(a power series
with memory) and neural networks have been employed
to  model systems in many science and
engineering. Some mildly (or weakly) nonlinear systems
can be modeled by Volterra series up to a finite order,
and some weakly or strongly nonlinear systems may be
also modelled by neural networks. However, as the order

of system nonlinearities

nonlinear

increases, more parameters or
weights are required in modelling the corresponding
nonlinear system, which makes the computational process
more complicated and requires much more computational
burden. Thus, many
system modeling or

researches related to nonlinear
identification have been done to
relieve such computational burden.

Once the system to be linearized is modeled, several
can be utilized to
eliminate or minimize the undesirable nonlinear effects.
Depending on the position of compensators with respect
to the system being linearized, they can be classified into
two categories: a pre-processor (or predistorter) and a
post-processor (or equalizer). If the compensator is
located before the system, it is called a predistorter, and,
if located after the system, it is called a post-processor.
In some cases, the pre-processor might be preferred: For
the sound wave distorted by a loud-

nonlinear compensation methods

example, (i)
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speaker cannot be compensated for after it reaches a
spatial point, where a post-processor cannot be applied,
and (i) in telecommunication systems, the noise
enhancement effects can be avoided or minimized if the
nonlinear  distortion effects can be in advance
compensated for before transmitting signals through the
channel.

This paper deals with a new pre-processing technique
for the linearization of a weakly nonlinear Volterra
system (which is defined as a nonlinear system to be
modeled by Volterra series up to third order : nonlinear
terms with an order higher than three are small enough
to be ignored in the total system response). When the
linear part of the Volterra filter has a stable linear
inverse, the commonly-used Pth-order inverse[5] can be
applied for the nonlinearity compensation. However, as
the order of system nonlinearities or the size of the
system memory increases, the structure of the
corresponding Pth-order inverse system becomes highly
complicated and it is very difficult to implement the
inverse system. Recently, one approach to solve such
problems in the design of nonlinear compensators was
proposed in [6], where only the lowest-order nonlinearity
can be removed by the linearization method, and still
remaining nonlinearities higher than the lowest one might
have significant effects on the system performance. Thus,
in this paper, a new adaptive pre-processing technique is
presented, where the linearization method in [6] is a little
modified by employing a linear adaptive filter (instead of
a linear inverse filter as in [6]) in the design of a
nonlinear compensator, to minimize the total distortion in
the output.

In the next chapter, Volterra series modeling of
weakly nonlinear systems is considered, and in Chapter
M, a new adaptive pre-processing method 1s presented.
Also, filter coefficient updating algorithms the
adaptive compensation of the pure nonlinear distortion are
derived in Chapter IV, and, finally, some simulation

for
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results are provided in Chapter V to demonstrate the
validity of the proposed pre-processing technique.

II. Modeling of weakly nonlinear Volterra systems
The system output, slnl, of a weakly nonlinear
system, which can be modeled by a third-order Volterra
series with input y[n], can be expressed by where Hy[ - ]
is

sl = 3 Hlinll
=S il -
+ 8 S i A -]
+ S S S it kn— a4

a Lth-order Volterra operator and hilil, holijl, halijk]
quadratic, and Volterra kernels,
respectively. Also, N is the system memory size. For the
identification of such a weakly nonlinear system, a
third-order adaptive Voiterra filter (AVF) and a recursive
least-squares (RLS) algorithm can be utilized to estimate

are linear, cubic

the respective first-order, second-order, and third-order
system kemels in an adaptive way.

(Noniinear System, H)

vinl s[nl

@ w[n].
]

(estimation noise)

(Adaptive Volterra Filter (AVF))

Fig. 1. Identification of a nonlinear Volterra system.

Let's consider egln] which is defined as the error
between the system(H) output and the Volterra model
output (see Fig. 1)

el n]=sln] — ZIHL[y[n]] 2)

By minimizing ElesInl],
Volterra kernels of the

we can get the estimated

system H. Then, we get

al~ 3 Hilslnl] @

From these estimated Volterra kemnels, the filter
coefficients of a linear inverse filter(LIF) and of a linear
adaptive filter(LAF) in the proposed pre-processor (see
Fig. 2) can be updated for the adaptive compensation of
both linear and nonlinear distortions, which will be
discussed in more detail in the next two chapters
(Chapter Il and V).

System
H

xni

System
Wentification
A- A A

Fig. 2. The structure of the proposed adaptive pre-
processing system.

M. Structure of the proposed pre—processor

The block diagram of the pre-processor proposed in
this paper is presented in Fig. 2, where (i) from /O data
of the weakly nonlinear Volterra system, the linear,
quadratic, and cubic Volterra kernels can be obtained by
applying the adaptive Volterra filter(AVF) and the RLS
algorithm, (ii) the estimated nonlinear Volterra kerels
(e, ﬁg, and ﬁg) are copied to the pure nonlinear dis—
tortion compensation(PNDC) at every iteration, where the
PNDC is introduced to compensate for the nonlinear
distortion, (iii) before the LIF operates, x[n] is equal to
gln], and after the LIF operates, gin] is equal to
H, '[x[n]] (then, rln] becomes x[n-Tal: here, Ta is a
delay), and (iv) the linear inverse filter (LIF), H '[ -1,
which is introduced to compensation for the
distortion (see Fig. 2), starts to operate only after the
nonlinear distortion in the system output decreases to
some degree(see Fig. 4).

linear

IV. The LAF coefficient update algorithm

The LAF filter coefficients of the pure nonlinear
distortion compensator(PNDC) as described in Fig. 2 can
be updated by minimizing the mean square errors,
“(ex[n]), and by applying the steepest descent algorithm,
where ej[n] is defined as the difference between
A [gln—TFl] and the system model output, rln], of
the weakly nonlinear system (eiln] is the purely
nonlinear distortion part in the system output and Tr is
the delay of LAF filter: see (4) and Fig. 2):
Hlgln—Trll— ] “)

el[n]:

Also, the input, y[nl, to the weakly nonlinear system, can
be expressed as follows:

y[n]'—’[— l;zt)ﬁm]v[n~m]+g{n— TF]] (5

where

3 By lelnl]
E&l (i, el n—dleln—j] (6)

vl n]

Il

E’ﬁ}’i’ fis i, Klgln— gl n— el n— K]

and flml’'s (m=0, 1, .., M-1), are the LAF filter
coefficients (see Fig. 2) for the nonlinear distortion
compensation. Also, (M-1) is the order of the LAF and

H,[ -] represents the estimated Lth-order Volterra
operator of linearized.

the nonlinear system to be
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To find the LAF filter coefficients optimal in a mean
square error sense, the method of steepest-descent[7] can
be utilized, which allows the LAF coefficients (i) to be
updated in a direction opposite to that of the derivative
of the mean-squared-error or cost function (gradient
vector) evaluated with respect to the filter coefficient
vector and (ii) to converge to an optimum at which each
gradient value is zero (note that the LAF is a linear
filter). By applying the steepest descent algorithm to
(4)-(6), we can get the following:

det n]
fn+1[m] an[m]—‘éim
- a n] (7)
= fulml+ pe|[ n] 3f,,[:1n]
(m=0,-,M—1)
where
Anl= Zl H, [y #]]+ wln] (8)
o=l _ alnl  ovln—+l )
oflm] — =o oln—r]  af[ml] :
_odn]l _ 3
8y[nzr] - hl[f}
+2 Z ko7, i n—1] 10)
+3 g g Byl 7,4, 1 n—dlsln—j]
—%—;n[—_m]rl=*v[n—r—7n] (11)

From (8)-(11), the LAF filter coefficients, flm]’'s (m=0, 1,
... M-1), can be obtained adaptively.

V. Computer simulation
To demonstrate the validity of the proposed approach,
three simulations are considered:
1. Linearization of a memoryless nonlinear system:
The system considered in the simulation is a
third-order Volterra system which is
expressed by

Anl = Hly[n]] , ‘
=[] +0.29n]+0.5v[n) 12

memoryless

In this simulation, the LAF becomes also memoryless
and its coefficient, f[0], which is optimal in the mean
square error sense, is given by 0.4749. Futhermore, Fig. 3
shows the input-output relationship (linearized outputs)
when the magnitude of the input is on the interval [-1,1],
where the Curve-(a) is the system output without any
compensation, the Curve-(b) 1is the linearized output
obtained by applying the Gao's linearization method{6],
and the Curve-(c¢) is the linearized output obtained by the
proposed method (also, the Curve-(d) in Fig. 3 indicates
the perfectly linearized output). Note that the second-order
nonlinear terms can be removed by the Gao's method(6],
but, higher-order nonlinear terms still remains in the
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Fig. 3. The linearized output curves:
Curve-(a): Output without compensation.
Curve-(b): OutputbythePth-orderinverse (P=2).
Curve-(c): Output by the proposed method.
Curve-(d): 45° line.

output (the Gao’s method is equivalent to 2nd-order
inverse). In particular, the linearization approach proposed
in this paper, where the LAF filter coefficients are
updated by minimizing total (linear and nonlinear)
distortions, leads to better linearization performance than
the Gao's method[6] (see Fig. 3).
2. Comparison with the commonly-used pth-order inverse

method

In this simulation, we compare the performance and
convergence properties of our approach with those of the
Pth-order inverse method[8]. The following Volterra
system, which was considered in [8], is also adopted for
comparison:

Anl=H\[y[n]]+ H;[ y[ n]]+ wl 2] (13)
where

Hi[y[#nl] =0.8300y[ ]
+0.7097 y[n~1] (14)
+0.1659y[ 72— 2] —0.2463 y[ »— 3]

Hyly[#]] =1.8943y"[ #]
+0.3157y[#n—11 v[n—2] y[ n—3]
+0.3157y[n—1] Min—31y[n—2]
+0.3157y [n—2] s n—1] s[ n—3](15)
+0.3157y{n—2] M n—3ly[n—11]
+0.3157y[n—3] Mn—11 [ n—2]
+0.3157y{n—3] M{n—2] M n—1]

Note that the linear part of the Volterra system has
minimum phase. Also, the input is chosen as a Gaussian
random signal with 30 dB SNR as in [8].

The performance criterion (i.e., normalized minimum
mean square error: NMSE) is defined by

El(dln—TJ—2[x])?*]
E[dz[%“ Td]]

10 IOg 10 (16)

where dln] is equal to Hi[x[n-Tgl] before the LIF
operates, as described in Chapter III and in Fig. 2, and
dln] becomes x[n-Tqg (here, T4 is the possible delay
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from LIF and LAF) after the LIF is connected.

The simulation results in Fig. 3 show that (i) the
nonlinear distortions were reduced by about 16 dB in the
first part (when the LIF is off) and (ii) in the second
part (at iteration number 3000, when the LIF starts to
operate), the normalized minimum mean square(NMSE)
decreases to about -23[dB] at iteration number 6000.
Note that, in the Pth-order inverse method[8], where the
system parameters assumed to be known (identification
was not performed), the -23[dB] level of the NMSE
curve was reached at iteration number 30000. In our
approach, the system identification procedure is also
performed in an adaptive way, but in spite of this
additional computational burden, much (about 5 times)
faster and more stable converging characteristcs can
be obtained in our approach under the same conditions
as in [8].

1) LIF 'OFF'
2) LIF "ON'

2)

[dB] opt

u] 2000 4000 6000 8000 10000
iteration no.

Fig. 4. NMSE obtained by the proposed approach.
1) Reduction of nonlinear distortion,
2) Reduction of total distortions.

3. Application to the compensation for the satellite com-

munication channel

In this simulation, the performance of the proposed
nonlinear pre-processor is tested by utilizing a baseband
model of a satellite communication channel[9], as shown
in Fig. 5 the transmit and receiver filters are given by
TX=[0.8, 0.1] and RX=[0.9, 0.2, 0.1], respectively, and the
nonlinearities of TWT(traveling wave tube) may be
characterized by the following AM/AM and AM/PM
conversions:

a,r

A(r)—wHBafJ (17)
__aynt

D(») = 15 8,7 (18)

In AN-Q8), e,=2, B,=1, ay=n/3, B4=1, and r
is the input amplitude. If 6 is the phase of the TWT
input, then the amplitude and phase of the TWT output

can be expressed by A(#») and @(»)+ 6 . Then, the
satellite channel can be modeled by Volterra series with

odd-order nonlinearities[3][4][9). For this simulation, its
third-order Volterra model, and 16-PSK signals with 0.68
magnitude (as the input to the pre—processor) are applied.

x(n) Transmit Traveling Receiver | y(n)
— = Filter Wave Tube Filter |— =
(TX) (TWT) (RX)

Fig. 5. The basedband model of satellite communi-
cation channel.

To venfy the performance of the proposed method, the
Gao’s linearization approach is simulated at the same
condition and compared with the proposed method. From
the simulation results, the NMSE(normalized minimum
mean square error) of the Gao's method is
0.0053(-22.7dB) and that of the proposed pre-processing
technique is 0.0012(-29.2dB) in case of the 2000-point
test signals. The scattering diagram at the output of the
nonlinear channel when the proposed approach is applied
is shown in Fig. 6.
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Fig. 6. The compensated output of a satellite com-
munication channel.

VI. Conclusion
a new pre-processing technique to
linearize a weakly nonlinear system 1is presented. In

In this paper,

particular, the proposed pre-processor has (i) a simpler
structure, consisting of a linear inverse filter (LIF) and a
pure nonlinear distortion compensator (PNDC), and (i)
faster convergence property than the Pth-order inverse
method. The reason i1s that, while all Volterra kernel
coefficients in the Pth—order inverse method are required
to be wupdated at every iteration, only the LAF
coefficients in the proposed linearization approach need to
be updated, which leads to (i) considerable reduction of
structural complexity and computational burden and (i)
easy implementation of the linearization algorithm. Also,
the computer simulations demonstrate the good
performance of the proposed adaptive pre-processing
method. From these encouraging simulation results, we
are going as a next step to analyze real experimental
data and utilize the derived results for the linearization of
real weakly nonlinear systems.
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