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Specification of a Software Architecture and Protocols
for Automated VLSI Manufacturing System Operation

AtsstE VLS 4ok AjaH
et ~ZEMYO = W Z2EFE HA

O
[Lr—Y

fijo

Jonghun Park, Jongwon Kim and Wook Hyun Kwon
Ed, 254, 459

247 2 H4 A Aol FEo "
*M%P‘Rit}. MwE Az A2de ¢8 Aol 5L ZE 2473} WE

e
ol

K1 of: 2 drdME AF3d VLSI Az Al2d BAAY ZE
A2 AZTEY Fx 2 ZEEES

A A7t s qERFHor FAste

SR F Ae wE A A7)l er%ig o F st Felo|dE

o} #Ad 71E AFEC] MG T2 AF HE BEUd ARE
g ER& A9 AoE Y3t AT

2}

2l

N
olr
m]o

AbE-3te] F-@o] ol

Keywords :

1. Introduction

The manufacturing of very large scale integrated
(VLSI) circuits is perhaps the most complex manu-—
facturing process found today [8]. Traditionally, this
complexity has arisen from many sources such as pro-
cess intricacy, product diversity, uncertainty and
technology changes. Furthermore the continuous intro-
duction of automation technology like CIM (Computer
Integrated Manufacturing) has also created a new
challenging problem of efficient management of au-
tomated VLSI facilicity. Therefore, as noted by Moyne
[10], the cell controllers which are responsible for
- seamless integration of equipments and high-level con-
trollers in a facility control structure should be clearly
defined and characterized.

The objective of this research is to present a new
architecture and protocol of lot coordinator and generic
cell controller in which operational coordination is achie—
ved through process cooperation in a fully automated
VLSI manufacturing environment. In this research, the
processes communicate with other distributed processes
managing their own manufacturing resources by means
of certain types of predefined messages. There are two
basic types of messages : an operation request and an
event notification. The coordination activities are modelled
as a client-server interaction, which facilitates under-
standing the way it operates [1].

Our motivation comes from the fact that there has
been a growing need for the control system which has
reconfigurability and modularity to fully exploit flexibility
of individual automated VLSI equipment. But, design
ofthe control system for coordinating various equipment
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and material handling system is not an easy job and it
must be pointed out that the software is
inherently difficult [3). The control system should
be able to coordinate concurrent jobs competing
for nonsharable and limited resources (for
example, reactive ion etcher and furnace) and to
synchronize the events occurring from VLSI
equipments to perform an operation as required
by recipe. Furthermore, it is commonly found
that a recent automated manufacturing system is
composed of functional cells communicating with
each other through the local area network [16].
Therefore, a distributed computing solution,
where processes cooperate with one another to
work toward a common goal, can help to obtain
a simple design and implementation for an
application that is distributed in nature [17].

There have been a lot of research efforts along with
the development and implementation of the automated
manufacturing cell controllers. One of the representatives
is MMST (Microelectronics Manufacturing Science and
Technology) CIM system framework which is based on
open distributed system and object technologies [12].
Moyne and McAfee [10] proposed a generic cell con-
troller model to maximize software portability and to
reduce unnecessary redundancy. They also verified the
feasibility of the design using simulation. Naylor and
Volz [13] suggested a modeling formalism based on a
first-order language. Recently, a formal shop floor control
model named message-based part state graphs (MPSG)
which can serve as a basis for automatic generation of
the control software was developed [18]. Scheduling and
control models based on a distributed computing tech-
nique have been proposed by Aggarwal et al. [2], and
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Gauthier et al [7]. There exists also another approach
which is based on distributed artificial intelligence (DAI),
where scheduling decision is made dynamically using
bidding mechanism among the agents representing
components in manufacturing system [15], [16]. In this
line of research, Ramos [15] suggested the architecture in
which agents representing tasks and resources cooperate
each other. This paper is organized as follows @ Section
2 describes the proposed coordination architecture. The
architecture includes two major cooperative processes
named lot coordinator and generic cell controller. The lot
coordinator and generic cell controller are covered in
detail in Sections 3 and 4 respectively. The paper is then
concluded in Section 5.

II. The proposed coordination architecture

The production of IC's is accomplished in a four-stage
process that consists of wafer fabrication, wafer probe or
test, IC assembly, and IC bumn-in or functional test [9].
A wafer contains many identical chips, and wafers are
grouped in lots, each of which travels together in a
standard container and is destined for conversion to the
same final product [4], [6]. The wafer fabrication is done
in a clean room called a fab, which is typically divided
into U-shaped bays.
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Fig. 1. An example fab layout.

A bay generally contains major pieces of equipments
on which a basic operation is performed. Each lot
entering the clean room has an associated process flow,
often called a recipe, that consists of precisely specified
operations executed in a prescribed sequence on pre-
determined pieces of equipment [6].

In general, many modern wafer fabs have been laid
out as a series of bays, each supplied with intero—
perational storage (stockers). The transport operations in
a wafer fab have usually been classified into interbay
and intrabay lot transfers [5). A bay is production work
shop dedicated to a particular process. Each bay has
production and measurement equipment, automatic wafer
cassette storage (stocker), and an inter-bay transfer
robot [11]. Figure 1 shows an example layout of fab
area.

In most cases, the controllers in an automated manu-~
facturing system are organized hierarchically to manage
complexity, which is called a hierarchical contro! archi-
tecture [14]. In our approach, the coordination activities
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are modelled as cooperative communication between
top-level controller and its subordinate controllers, where
the top-level controller acts as a client requesting an
operation and the subordinate controllers as servers
performing operations as their services. Based on this
modelling strategy, we will denote the. top-level controller
as the lot coordinator (L.LC) because its primary role is to
coordinate lots and also denote subordinate controller as
the generic cell controller (GCC). Figure 2 shows the
conceptual architecture composed of LC and GCC.

Lot Coordinator

operation reques' ﬁ event notification

Generic Generic Generic
Cell Cell Cell
Controller Controller Controller

Fig. 2. Proposed architecture.

GCC is responsible for managing one or more
equipment controllers. It receives an operation request
from LC and then performs various activities, such as
scheduling, dispatching, deadlock handling, and commu-
nicating with its equipment controllers. For example,
GCC can be a controller of a bay which is composed of
production  equipments interconnected by one intra-bay
material handling robot. According to its functionality,
GCC can be classified into transformation GCC and
inter-cell material handling GCC. LC takes care of
coordination and synchronization among the different
GCCs. It commands production activities by requesting a
necessary operation to corresponding GCC and handles
incoming events through interprocess communication
facility.

To dispatch and monitor a wafer manufactured in the
system we need some data abstractions. A data
abstraction LOT represents a lot having one or more
operation requirements of the wafer type to be produced.
LOT has its unique identifier which has been assigned to
it. Furthermore, two kinds of state information should be
maintained within LC for LOT to issue an appropriate
operation request : they are current states in trans-
formation state graph (TSG) and material handling state
graph (MSG). The TSG is a graph representing sequence
of operational conditions which are to be satisfied for the
lot to be produced successfully. TSG can be generated
from a recipe by selecting one instance from all possible
alternative routes in accordance with the performance
criterion used in the scheduling.

A transformation state graph TSG = (V, E) is defined
as follows.

1) V is a finite set of transformation states of a lot
(n, vz, ..., ). A node can be marked to represent the
current state.

2) E is a finite set of state transitions. An arc can be
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either active or inactive. Each arc e is assigned a label
ople), called required transformation operation for the
state transition.
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Fig. 3. An example of TSG.

Figure 3 depicts a simple example of partial TSG
where a lot needs first four operations to be done
sequentially. It shows that the lot is in state of having
been finished deposition operation (marked as black
circle). As is mentioned above, the label on arc is used
to indicate the required transformation operation for the
state change of a lot. An arc can be either active or
inactive, which indicates whether the task is currently
being processed by any of transformation resources or
not. Since the TSG will vary along with the wafer type,
every lot should have its own TSG identifier. Also, it
should be noted that other specific conditions such as
test requirement or TSG states of other lots can be
easily included in the TSG because it is just a
state/transition graph which is not necessarily lincarly
ordered. (a dotted arc in Figure 3 indicates this case.)

Furthermore, from the observation that operation in a
VLSI manufacturing system can be classified into
transformation or material handling, LC maintains another
state graph called material handling state graph (MSG).
Note that the material handling state of a lot is
maintained in a separate graph hecause the material
handling operation cannot be determined in advance in
contrast with the deterministic transformation require-
ment. It can be repeated with the same cycle without
any transformation having been made. Also unlike TSG,
MSG is a system-wide graph in that it is shared by all
lots currently being in a manufacturing system. A node
in MSG represents a station where a lot can be loaded
and an arc represents accessibility and required material
handling operation. Therefore, station sy is directly
connected with station sz, if a lot residing in sy can be
moved to s» with a single matenal handling operation
request. The MSG serves then as a source of
information for the location of lot at any moment and
shows all possible material handling operations for each
lot at a specific location.

A material handling state graph MSG = (V, E) is
defined as follows.

1) V is a finite set of accessible stations in a VLSI
manufacturing system, (s1, s2 , .., Sa). A node can be
labeled as ¢ to represent that lot 7 is located at the node.

2) E is a finite set of accessibility relationships. An
arc can be either active or inactive. Fach arc e is
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assigned a label ople), called required material handling
operation for movement between stations.

T N
Inter-bay robot

(b)
Fig. 4. An example of MSG.

An example of MSG and its corresponding layout is
illustrated in Figure 4 (a), where stations si, sz, and s3
are interconnected by inter-bay robot. Material handling
operation tp(si, s} represents a transportation from s; to
5y by the inter-bay robot. As in TSG, the dotted arrow
represents active arc showing that an operation is being
performed currently. The node s is labeled as 6
indicating that lot t1 is at station s;. The node marked as
doubled circle in the MSG represents a stocker where
multiple lots can be stored. The lots located in a stocker
can be retrieved to station s; by use of retrieval material
handling operation, and vice versa. In summary, a lot has
the current states in the TSG and MSG, so that the LC
can identify the current operation requirement of the lot
concerned. Since TSG and MSG are regenerated and fed
into the LC whenever a recipe or fab configuration is
changed, respectively, we can expect reconfigurability
from the proposed approach. For example, Figure 4 (b)
depicts a newly generated MSG when a new station is
introduced to the fab. In this case, it is assumed that the
transportation operation is only possible between s2 and
s;, Where j is 1, 3, or 4.

A more detailed architecture showing basic coo-
perations between LC and GCC is illustrated in Figure 5.
LC receives an event from remote GCC via monitor
process. A process named dispatcher sends an operation
request to GCC. Rectangles in Figure 5 imply that LC
and GCC are remotely distributed processes running
concurrently. Likewise, due to the asynchronous nature of
sending and receiving an event and an operation request,
every GCC has reporter and monitor processes, res-
pectively. It i1s also to be noted that every GCC has its
own scheduler and supervisor. It means the scheduling
decision 1s made independently and dynamically to
maximize production efficiency by each resource with its
own scheduling rule. In addition, the supervisor is
responsible for handling deadlock which is possible
within resources managed by a GCC.

Four major function primitives are defined in order to
make distributed process
follows :

communication possible as
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" Fig. 5. Cooperation between LC and GCC.

request_operation (GCC_id, lot_id, opn_id, opn_arg)

notify_event (GCC_id, GCC_state, lot_id, opn_id, opn_
state)

query_state (GCC_id, station_id)

notify_state (GCC id, station_id, station_state)

By the use of function request_operation, LC can
send an operation request of a lot to appropriate GCC
designated by GCC_id (generic cell controller identifier).
Function notify_event is used to send an event
notification concerned with operation of a lot from GCC
(specified by GCC_id) to LC. The variable GCC_state
can have values of ready or failure mode, or more modes
~ in terms of each equipment, not of entire GCC - for
more delicated control. The state ready represents that
the GCC can do at least one of its predefined operation
services. The variable opn_state is used to indicate
operation processing state which can be one of the
following operation_start, operation_finish, operation_
Start_error or operation_finish_error.

There are two additional function primitives named
query_state and notify_state, which are used for quer-
ying and notifying the state of a specific station,
respectively. The function query_state is invoked when
LC needs to know the state of a station in case of
fallure recovery. The query result is sent by notify_
state function. The variable station_state can be empty
or lot_id if it is occupied by a lot.

M. Specification of lot coordinator
Two different strategies can be considered for the
coordination of operations in automated VLSI manu-
facturing system. One is based on the state changes of
lots (defined as an early transportation strategy), and the
other on the state changes of transformation equipments
(defined as a late transportation strategy). In the early
transportation strategy, every decision regarding the next
operation for a lot (e.g. what is the next operation of a
lot ?) is made whenever the lot finishes its operation at
an equipment. In the late transportation strategy, how-
ever, every decision regarding the next operation of a
transformation equipment (e.g. what is the next operation
of the equipment ?7) is made whenever the equipment
finishes its operation. In addition, since material handling
resources are treated as secondary resources, the arrival

of a task triggers the execution of an operation.
One of the advantage of the late transportation
strategy is that routing flexibility is increased, because
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the decision as to which equipment a lot will be sent,
can be made as late as possible. But, in terms of
makespan of a lot to be completed, the early trans-
portation strategy has an advantage over the equip-
ment-oriented one, because total waiting time of a lot
can be reduced. This is due to the fact that as soon as
the buffer and transporter becomes available while the
equipment is busy, the lot can be transported to the local
buffer of the other equipment in advance for its next
operation. On the other hand, in the late transportation, it
is not possible to transport the lot to the local buffer of
the equipment which will perform its next operation until
that equipment becomes idle.

As introduced in the Section 2, LC operates in an
event-driven manner in that decision is made whenever
an event is received from a remote GCC or an system
operator. Since most of these events are results of state
changes of a lot, the LC can be said to be a lot-oriented
coordinator rather than equipment-oriented. In order to
handle a variety of events sent by GCC, the following
three criteria are used to group them into more abstract
events.

- operation start or operation finish
- SUCCess Or error
- transformation operation or material handling operation

Basically, an event from a GCC is a response to the
operation request made by LC. And it is sent by GCC
whenever the GCC starts or finishes an operation. It can
be either successful or erroneous. Also it can be related
either with transformation or with material handling
operation. For example, if an event named deposition_
start_error is received, it indicates that there is an error
at the starting time of a transformation operation named
deposition.

Upon receiving an event message, the event controller
of LC identifies the type of event and updates the
corresponding lot state. And then, if the lot state has
been changed, the event controller enqueues next required
operation of the lot to GCC by means of the re—
quest_operation function. And then, this request is sent
to GCC by dispatcher process of LC. A pseudocode of
the event controller is described in Figure 6.

In the pseudocode of Figure 6, dequeued event
message is stored to a variable named msg. The function
update_lot_state updates states in TSG and MSG. By
identifying the lot related with the event, the lot state is
updated and the make_operation_request function is
called if a lot is newly created or an operation_finish
event is occurred. In the function make_operation_
request, LC first identifies the next operation of the lot
and checks if all the other conditions (e.g. states of other
relevant lots) are satisfied for the next operation. When
satisfied, LC then checks whether a material handling
operation i1s necessary or not by looking up the state in
TSG and MSG. Then LC  invokes the
request_operation for next operation the lot concerned
(it can be either transformation or material handling

function
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operation). The event update_system_graph is included in
the Figure 6 to emphasize the fact that the TSG or
MSG can be reconfigured dynamically by a system
triggered event during system operation, if there is any
change made in the graphs.

It should be also noted that the LC coordinates
operations using the early transportation strategy which
allows a local buffering, since it operates in an
event—driven manner in that decision is made whenever
a state change of a lot is received from the distributed
GCCs. Therefore, it can provide better equipment utili-
zation compared with the late transportation strategy.

IV. Specification of generic cell controller
Fundamental activities of GCC are scheduling, dis-
patching and deadlock recovery. Whenever one of equi—
pments managed by GCC becomes ready state, GCC
selects one request from a lot list waiting for that
equipment and then dispatches an operation. Internal pro-
cess architecture of a GCC may vary slightly along with

MESSAGE msg;
LOT current_lot, lot_list(};

do {
msg = dequeue_message ();
current_lot = identify_lot(msg);
switch (msg) {
case start_system . // system-triggered event
lot_list = create_lot ();
make_operation_request (current_lot);
break;
case operation_start : // GCC-triggered event
update_lot_state (current_lot);
break;
case operation_finish ©  // GCC -triggered event
update_lot_state (current_lot);
make_operation_request (current_lot),
break;
case update_system_graph // system-triggered
event
update_system_graph O

} .
} while (TRUE)

Fig. 6. Pseudocode for event handling of L.C.
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constituent types and the number of

equipments in it. So we will

equipment
a generic
architecture which can be used in multiple equipment
environment. Figure 7 shows the process architecture of
GCC.

discuss

EQUIPMENT current_equipment;
MESSAGE msg;

while(TRUE) {
msg = dequeue_message_from_Q1 (),
current_equipment = identify_equipment (msg);
switch (msg) {
case operation_request - //LC-triggered event
register_operation_request (current_equipment);
dispatch_operation (current_equipment);
break;
case operation_start or resource_unready:
// EC-triggered event
notify_event ();
update_equipment_state (current_equipment);
break;
case operation_finish or resource_ready:
// EC-triggered event
notify_event ();
update_equipment_state (current_equipment);
dispatch_operation (current_equipment);
break;
case update_scheduling rule : // system-triggered
event
update_scheduling_rule ();

.
}

Fig. & Pseudocode for evert handling of GCC.

As shown in Figure 7, monitor process receives a
message from remote LC and stores it into a message
queue named Q1. Event controller process is the main
process dequeueing the message which contains an
operation request from LC. It dispatches an actual
command to equipment controller process by enqueueing
command to the message queue Q2. Each equipment
controller corresponds to exactly one transformation or
material handling equipment. Whenever the equipment
finishes its cwrent operation, event controller dequeues a
command from queue Q2 and starts an operation if there
is a command available. Also, whenever the equipment
starts or finishes an operation, the equipment controller
records this event to the message queue Ql. In Figure 7,
there are two sources of asynchronousy in view of the
event controller process : the monitor and the equipment
controller. Therefore, the message queue Q1 from which
the event controller dequeues a message, includes the
messages which are operation requests from LC and
occurrences of event from the equipment controller. The
event controller then puts the operation request into a lot
list if this message is an operation request, or puts the
event notification into the message queue Q3 if this
message is from a equipment controller. The pseudocode
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for an event controller will be looked like as in Figure 8.

In Figure 8, whenever an operation request is received
from LC, this request is registered into an internal lot
list maintained by the event controller (the function
register_operation_request). The lot list represents lots
waiting for its operation to be performed by one of
equipments in GCC. Each entry has two fields
lot_identifier and equipment_identifier. For the operation_
start or resource_unready event, the event controller just
notifies this event to LC using the notify_event func-
tion. The function update_equipment_state is necessary
to keep correct equipment state within the event
controller. Finally, an actual command can be invoked by
the function dispatch_operation when one of equipments
finishes its current operation, or becomes ready state
from failure, or new operation request is received. The
function dispatch_operation selects and dispatches a lot
from Q1 based on a current scheduling rule provided (for
example, FIFO : First-In-First-Out or SPT : Shortest
Processing Time). The scheduling rule may be changed
during the system operation, since it is reported that
combining different rules in dynamic way created better
performance when compared with the single-pass, static
way of applying the scheduling rules [19]. The event
update_scheduling_rule in the Figure 8 indicates a
request to change current scheduling rule into new one.
Thus, the GCC architecture can reflect this feature.

Since every command for an equipment is put to
message queue Q2 whenever the equipment becomes
ready , it follows that there is at most one command in
Q2 for an equipment at any time. Therefore, the behavior
of the equipment controller is very simple. At the
beginning, the equipment controller just waits until a
new command arrives in Q2. If a command for that
equipment is available, it starts an operation according to
the given command. When it finishes its operation, it
then again waits for another command to arrive. Also, it
should report the event whenever it starts or finishes an
operation.

V. Conclusion

In this paper, we have suggested a proposal on the
specifications of architectures and protocols to coordinate
operations in automated VLSI manufacturing environment.
While existing research papers concerning design of
operating software for semiconductor manufacturing sys-
tems address only global architectures and strategies, a
detailed process-level implementation design for control
of fab equipments as well as material handling system is
presented in this research. The proposed approach
modelled coordination activity as a client-server interac-
tion in which lot coordinator (LC) and generic cell con-
troller (GCC) communicate with each other cooperatively.
It can handle wvarious asynchronousies caused by
processes, equipments and user. Also, by separating
material handling state from transformation state, we
could get simpler design compared with mixed one.
Furthermore, since lot coordinator operates in an event-
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driven strategy allowing local buffering (e early
transportation policy), better equipment utilization can be
achieved.

Finally, the proposed approach has a reconfiguration
capability to the changes of fab layout, wafer type, and
scheduling rule. When a recipe is changed, it can be
accomodated by updating the TSG and sending an
update_system_graph event to the LC. Similarly, fab
layout change and introduction of a new material
handling system can be easily handled by reconstructing
and updating the MSG. And, as for scheduling rule, it
can be changed dynamically according to current fab
state for maximizing operation efficiency.
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