DOI QR코드

DOI QR Code

단일수분류 및 수분류군에 의한 열전달(I)-단일수분류-

Heat Transfer from Single and Arrays of Impinging Water Jets(I)-Single Water Jet-

  • 엄기찬 (인하공업전문대학 기계설계과) ;
  • 이종수 (인하공업전문대학 기계과) ;
  • 유지오 (신흥전문대학 건축설비과)
  • 발행 : 1997.09.01

초록

The heat transfer characteristics of free surface water jet impinging normally against a flat uniform heat flux surface were investigated. This deals with the effect of three nozzle configurations (Cone type, Reverse cone type, Vertical circular type) on the local and the average heat transfer. Heat transfer measurements were made for water jet issuing from a nozzle of which exit diameter 8 mm. The experimental conditions investigated are Reynolds number range of 27000 ~ 70000( $V_{O}$=3 ~ 8 m/s), nozzle-to-target plate distances H/D=2 ~ 10, and radial distance from the stagnation point r/D ~ = 0 ~ 7.42. For all jet velocities of H/D=2, the local Nusselt number decreased monotonically with increasing radial distance. However, for H/D from 4 to 10, and for the jet velocity $V_{O}$.geq.7 m/s for Cone type nozzle and $V_{O}$.geq.6 m/s for the other type nozzles, the Nusselt number distributions exhibited secondary peaks at r/D=3 ~ 3.5. For Reverse cone type nozzle and Vertical circular nozzle, the maximum stagnation point heat transfer and the maximum average heat transfer occurs at H/D=8. But for the Cone type nozzle, the maximum stagnation and average heat transfer occurs at H/D=10, 4, respectively. From the optimum nozzle-to-target plate distance, the stagnation and the average heat transfer reveal the following ranking: Reverse cone type nozzle, Vertical circular type nozzle, Cone type nozzle.ozzle.

키워드

참고문헌

  1. ASME, J. of Heat Transfer v.114 Effect of Nozzle Configuration on Transport in the Stagnation Zone of Axisymmetric, Impinging Free-Surface Liquid Jets:Part 1. Turbulent Flow Structure Stevens, J.;Pan, Y.;Webb. B. W.
  2. ASME, J. of Heat Transfer v.113 Local Heat Transfer Coefficients under an Axisymmetric, Single-phase Liquid Jet Stevens, J.;Webb, B. W.
  3. Int. J. Heat Mass Transfer v.37 no.8 Local Heat Transfer to Impinging Liquid Jets in the initially Laminar, Transitional, and Turbulent Regimes Elison, B.;Webb, B. W.
  4. ASME, J. of Heat Transfer v.117 Confined and Submerged Liquid Jet Impingement Heat Transfer Garimella, S. V.;Rice, R. A.
  5. ASME, J. of Heat Transfer v.114 Splattering and Heat Transfer during Impingement of a Trubulent Liquid Jet Lienhard V, J. H.;Liu, X.;Gabour, L. A.
  6. ASME, J. of Heat Transfer v.116 Wall Roughness Effects on Stagnation Point Heat Transfer beneath an Impinging Liquid Jet Gabour, L. A.;Lienhard V. J. H.
  7. ASME, J. of Heat Transfer v.115 Correlating Equations for Impingement Cooling of Small Heat Sources with Single Circular Liquid Jets Wonac, D. J.;Ramadhyani, S.;Incropera, F. P.
  8. Int. J. Heat Mass Transfer v.30 no.6 The Effect of Surface Renewal due to Large-scale Eddies on Jet Impingement Heat Transfer Kataoka, K.;Suguro, M.;Degawa, H.;Maruo, K.;Mihata, I.
  9. ASME, J. of Heat Transfer v.114 Effect of Nozzle Configuration on Transport in the Stagnation Zone of Axisymmetric, Impinging Free-surface Liquid Jets:Part 2.Local Heat Transfer Pan, Y.;Stevens, J.;Webb. B. W.
  10. ASME, J. of Heat Transfer v.117 Heat Transfer from a Flat Plate to a Fully Developed Axisymmetric Impinging Jet Lee, D.;Grief, R.;Lee, S. J.;Lee. J. H.
  11. Int. J. Heat Mass Transfer v.37 no.6 Local Heat Transfer Measurements from an Elliptic Jet Impinging on a Flat Plate using Liquid Crystal Lee, S. J.;Lee, J. H.;Lee, D. H.
  12. 日本機械學會論文集 v.21 no.104 水噴流たよる 冷却に ついて 永井;河谷;谷口
  13. Int. J. Heat Mass Transfer v.14 no.3 Local Convective Heat Transfer from a Heated Surface to an Impinging, Planar Jet of Water Vader, D. T.;Incropera, F. P.;Viskanta, R.
  14. Int. J. Heat Mass Transfer v.26 no.12 Heat Transfer from Round Impinging Jets to a Flat Plate Hrycak, P.
  15. University Science Books An Introduction to Error Analysis Taylor, J. R.