References
- Z. Wahr. Werw. Geb. v.60 On the funtional central limit theorem and the law of iterated logarithm for Markov processes Bhattacharya, R. N.
- J. Theoretical Probability v.8 Ergodicity of Nonlinear First Order Autoregressive Modles Bhattacharya, R. N.;Lee, C. H.
- Statistics & Probability Letters v.22 On geometirc ergodictiy of nonlinear autoregressive models Bhattacharya, R. N.;Lee, C. H.
- Ann. Probab. v.16 Asymptotics of a class of Markov processes which are not in general irreducible Bhattacharya, R. N.;Lee, O.
- J. Multivariate Analysis v.27 Ergodicity and Central Limit theorems for a class of Markov Processes Bhattacharya, R. N.;Lee, O.
- Convergence of Probability Measures Billingsley, P.
- Adv. Appl. Probab. v.17 paper On the use of the deterministic Lyapunov function for the ergodicity of stochastic difference euations Chan, K. S.;H. Tong
- Dokl.Akad. Nauk. SSSR v.19 The central limit theorem for stationary ergodic Markov process Gordin, M. I.;Lifsic, B. A.
- Asymptotics of a class pth-order Nonlinear Autoregressive processes, preprints. Lee, C. H.
- General Irreducible Markov chains and Nonnegative Operators Nummelin, E.
- Adv. Appl. Probab. v.22 Nonlinear time series and Markov chains Tjφstheim, D.