A RIGIDITY THEOREM FOR REAL HYPERSURFACES IN A COMPLEX PROJECTIVE SPACE

SEONG BAEK LEE, IN-BAE KIM, NAM-GIL KIM AND SEONG SOO AHN

ABSTRACT. The purpose of this paper is to prove a rigidity theorem for real hypersurfaces in a complex projective space.

1. Introduction

Let $P_n(C)$ be a *n*-dimensional complex projective space with Fubini-Study metric of constant holomorphic sectional curvature 4c. It is an open question whether a real hypersurface in $P_n(C)$ has rigidity or not. More precisely, if M is a (2n-1)-dimensional Riemannian manifold and $\iota,\hat{\iota}$ are two isometric immersions of M into $P_n(C)$, then are ι and $\hat{\iota}$ congruent? To this problem, Y.-W. Choe, B. H. Kim, H. S. Kim, H. Song, Y. J. Suh, R. Takagi and the second author gave some partial solutions (see [1], [2] and [4]). On the other hand, R. Takagi ([5] and [6]) classified all homogeneous real hypersurfaces in $P_n(C)$ which are orbits under analytic subgroups of the projective unitary group PU(n+1)in $P_n(C)$. These homogeneous real hypersurfaces in $P_n(C)$ are locally congruent to one of the six model spaces of type $A_1,A_2,\ B,C,D$ and E (for details, see Theorem A in [5]). An almost contact structure is naturally introduced on a real hypersurface in $P_n(C)$ from the complex structure of $P_n(C)$, and all the structure vector fields of the model spaces are principal directions of the spaces. The purpose of this paper is to give a partial solution of the rigidity problem mentioned above . Namely we shall prove

Received May 30, 1997. Revised July 19, 1997.

¹⁹⁹¹ Mathematics Subject Classification: Primary 53C40; Secondary 53C15.

Key words and phrases: structure vector field, principal direction, rigidity.

The present work was suported by the Chosun University Research funds, 1996.

THEOREM 1. Let M be a (2n-1)-dimensional Riemannian manifold, and let $\hat{\iota}$ and ι be two isometric immersions of M into $P_n(C)(n \geq 3)$. If the structure vector fields of $\hat{\iota}$ and ι are principal directions, then the two structure vector fields coincide up to sign on M,

THEOREM 2. Let M be a (2n-1)-dimensional Riemannian manifold, and let $\hat{\iota}$ and ι be two isometric immersions of M into $P_n(C)(n \geq 3)$. If the structure vector fields of $\hat{\iota}$ and ι are principal directions and the type number of $(M,\hat{\iota})$ or (M,ι) is not equal to 2 at every point of M, then $\hat{\iota}$ and ι are rigid, that is, there exists an isometry ϕ of $P_n(C)$ such that $\phi \circ \iota = \hat{\iota}$.

2. Preliminaries on real hypersurfaces

Let ι be an isometric immersion of a (2n-1)-dimensional Riemannian manifold M into the complex projective space $P_n(C)$ with the metric of constant holomorphic sectional curvature 4c. For a local orthonormal frame field $\{e_1, e_2, ..., e_{2n-1}\}$ of M, we denote its dual 1-forms by θ_i . Then the connection forms θ_{ij} and the curvature forms Θ_{ij} of M are defined by

$$(2.1) d\theta_i + \sum \theta_{ij} \wedge \theta_j = 0, \quad \theta_{ij} + \theta_{ji} = 0,$$

(2.2)
$$\Theta_{ij} = d\theta_{ij} + \sum \theta_{ik} \wedge \theta_{kj}$$

respectively, where and in the sequel the indices i, j, k, l, ... run over the range $\{1, 2, ..., 2n-1\}$, unless otherwise stated. We denote the components of the shape operator or the second fundamental tensor A of (M, ι) by A_{ij} , and put $\psi_i = \sum A_{ij}\theta_j$. The rank of A is called the type number of (M, ι) . For the complex structure J of $P_n(C)$, we put $J_{ij} \circ \iota = \phi_{ij}$ and $J_{2ni} \circ \iota = \xi_i$. Then we have the equations of Gauss and Weingarten

$$(2.3) \hspace{1cm} \Theta_{ij} = \psi_i \wedge \psi_j + c\theta_i \wedge \theta_j + c \sum (\phi_{ik}\phi_{jl} + \phi_{ij}\phi_{kl})\theta_k \wedge \theta_l,$$

$$(2.4) d\psi_i + \sum \psi_j \wedge \theta_{ji} = c \sum (\xi_j \phi_{ik} + \xi_i \phi_{jk}) \theta_j \wedge \theta_k$$

respectively, where (ϕ_{ij}, ξ_k) is the almost contact structure on M. $\xi = (\xi_i)$ is called a *structure vector field* of ι . The tensor fields $A = (A_{ij}), \phi = (\phi_{ij})$ and $\xi = (\xi_i)$ on M satisfy

$$(2.5) A_{ij} = A_{ji}, \phi_{ij} = -\phi_{ji},$$

(2.6)
$$\sum \phi_{ik}\phi_{kj} = -\delta_{ij} + \xi_i\xi_j, \quad \sum \xi_j\phi_{ji} = 0, \quad \sum \xi_i^2 = 1,$$

(2.7)
$$d\phi_{ij} = \sum (\phi_{ik}\theta_{kj} - \phi_{jk}\theta_{ki}) - \xi_i\psi_j + \xi_j\psi_i,$$

(2.8)
$$d\xi_i = \sum (\xi_j \theta_{ji} - \phi_{ji} \psi_j).$$

For another isometric immersion $\hat{\iota}$ of M into $P_n(C)$, we shall denote the differential forms and tensor fields of $(M, \hat{\iota})$ by the same symbol as ones in (M, ι) but with a hat. Since the canonical 1-forms, connection forms and curvature forms are independent of the choice of immersions, it follows from (2.3) that

(2.9)
$$A_{ik}A_{jl} - A_{il}A_{jk} + c(\phi_{ik}\phi_{jl} - \phi_{il}\phi_{jk} + 2\phi_{ij}\phi_{kl})$$

$$= \hat{A}_{ik}\hat{A}_{il} - \hat{A}_{il}\hat{A}_{jk} + c(\hat{\phi}_{ik}\hat{\phi}_{jl} - \hat{\phi}_{il}\hat{\phi}_{jk} + 2\hat{\phi}_{ij}\hat{\phi}_{kl}).$$

As for the rigidity of (M, ι) and $(M, \hat{\iota})$, the following is known and will be used later.

THEOREM A ([1]). Let M be a (2n-1)- dimensional Riemannian manifold, and $\hat{\iota}$ and ι be two isometric immersions of M into $P_n(C)(n \geq 3)$. If the two structure vector fields coincide up to sign on M and the type number of $(M,\hat{\iota})$ or (M,ι) is not equal to 2 at every point of M, then $\hat{\iota}$ and ι are rigid, that is, there exists an isometry ϕ of $P_n(C)$ such that $\phi \circ \iota = \hat{\iota}$.

3. Proof of Theorems

Since the structure vector fields ξ of ι and $\hat{\xi}$ of $\hat{\iota}$ are principal directions, we have

(3.1)
$$\sum A_{ij}\xi_j = \alpha\xi_i \quad and \quad \sum \hat{A}_{ij}\hat{\xi}_j = \hat{\alpha}\hat{\xi}_i.$$

It is known ([3]) that the principal curvatures α and $\hat{\alpha}$ are constant on M. Since $\hat{A} = (\hat{A}_{ij})$ is a symmetric matrix and $\hat{\xi}$ is a principal direction, we can choose a local orthonormal frame field $\{e_1 = \hat{\xi}, e_2, ..., e_{2n-1}\}$ of M such that \hat{A} is diagonalized with respect to the frame field, that is,

$$\hat{A}_{ij} = \nu_i \delta_{ij},$$

where ν_i are principal curvature of $\hat{\iota}(M)$ and $\nu_1 = \hat{\alpha}$. It follows from this frame field and (2.6) that

(3.3)
$$\hat{\xi}_1 = 1, \quad \hat{\xi}_a = 0 \quad and \quad \hat{\phi}_{i1} = 0,$$

where and in the sequel the indices a, b, c, ... run over the range $\{2, 3, ..., 2n -1\}$. From (2.9) and (3.2) we have

$$(3.4) \qquad A_{ik}A_{jl} - A_{il}A_{jk} + c(\phi_{ik}\phi_{jl} - \phi_{il}\phi_{jk} + 2\phi_{ij}\phi_{kl}) = \nu_i\nu_j(\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) + c(\hat{\phi}_{ik}\hat{\phi}_{jl} - \hat{\phi}_{il}\hat{\phi}_{jk} + 2\hat{\phi}_{ij}\hat{\phi}_{kl}).$$

Putting i = a, j = b, k = c and l = 1 into (3.4) and using (3.3), we obtain

$$(3.5) A_{ac}A_{b1} - A_{a1}A_{bc} + c(\phi_{ac}\phi_{b1} - \phi_{a1}\phi_{bc} + 2\phi_{ab}\phi_{c1}) = 0.$$

If we multiply (3.4) by ξ_l and use (2.6) and (3.1), we get

(3.6)
$$c(\hat{\phi}_{ik}\sum_{l}\hat{\phi}_{jl}\xi_{l} - \hat{\phi}_{jk}\sum_{l}\hat{\phi}_{il}\xi_{l} + 2\hat{\phi}_{ij}\sum_{l}\hat{\phi}_{kl}\xi_{l}) = \alpha(\xi_{j}A_{ik} - \xi_{i}A_{jk}) + \nu_{i}\xi_{i}\nu_{j}\delta_{jk} - \nu_{i}\xi_{j}\nu_{j}\delta_{ik}.$$

Now we shall prove

LEMMA 3.1. If the principal curvature α vanishes on M, then the two structure vector fields ξ and $\hat{\xi}$ coincide up to sign on M.

PROOF. It follows from $\alpha = 0$ and (3.6) that

$$(3.7) \qquad \hat{\phi}_{ik} \sum \hat{\phi}_{jl} \xi_l - \hat{\phi}_{jk} \sum \hat{\phi}_{il} \xi_l + 2\hat{\phi}_{ij} \sum \hat{\phi}_{kl} \xi_l = 0 (k \neq i, j).$$

Multiplying (3.7) by ξ_i and summing up it for $i(\neq k)$, we have

$$(3.8) \qquad (\sum \hat{\phi}_{jk}\xi_k - \hat{\phi}_{ji}\xi_i) \sum \hat{\phi}_{il}\xi_l = 0 (i \neq j)$$

by use of (2.5) and (2.6). If $\sum \hat{\phi}_{jk}\xi_k - \hat{\phi}_{ji}\xi_i = 0$ for $i \neq j$, then, by summing up for $i(\neq j)$, we obtain $(2n-3)\sum \hat{\phi}_{jk}\xi_k = 0$. Therefore (3.8) implies that

$$\sum \hat{\phi}_{ik} \xi_k = 0 \text{ or } \sum \hat{\phi}_{jk} \xi_k = 0 \text{ for } i \neq j.$$

If there are non-zero components of the vector field $\hat{\phi}\xi$, then (3.8) shows that there is only one non-zero component of $\hat{\phi}\xi$, say $\sum \hat{\phi}_{2k}\xi_k \neq 0$. By putting $i, j \neq 2$ and k = 2 into (3.7), it is easily seen that

$$\hat{\phi}_{ij} = 0 \text{ for } i, j \neq 2.$$

This means that the rank of $(\hat{\phi}_{ij})$ is not greater than 2. Since the rank of $(\hat{\phi}_{ij})$ is equal to $2n-2\geq 4$, the above argument is contrary. Thus all the components of $\hat{\phi}\xi$ vanish, that is, $\hat{\phi}\xi=0$ on M. This shows that $\xi=\pm\hat{\xi}$, and completes the proof.

From now on we consider the case where the principal curvature α does not vanish on M. Putting i=a, k=b and j=1 into (3.6) and using (3.3), we have

(3.9)
$$\xi_1 A_{ab} - \xi_a A_{b1} = \frac{\hat{\alpha}}{\alpha} \xi_1 \nu_a \delta_{ab}.$$

If we multiply (3.5) by ξ_c and make use of (2.5), (2.6) and (3.1), then we obtain

$$\xi_a A_{b1} = \xi_b A_{a1}.$$

LEMMA 3.2. If the principal curvature α does not vanish on M, then the two structure vector fields ξ and $\hat{\xi}$ coincide up to sign on M.

PROOF. Assume that the two structure vector fields ξ and $\hat{\xi}$ do not coincide on M, that is, $\xi_1^2 \neq 1$ on M. Then, multiplying (3.10) by ξ_b and using (3.1), we obtain

(3.11)
$$A_{a1} = \frac{\alpha - A_{11}}{1 - \xi_1^2} \xi_a \xi_1.$$

We see from (3.11) that $\xi_1 \neq 0$ on M. In fact, if $\xi_1 = 0$ on M, we have $A_{a1} = 0$ for any index a. It follows from (3.5) that

$$\phi_{ac}\phi_{b1} - \phi_{bc}\phi_{a1} + 2\phi_{ab}\phi_{c1} = 0.$$

Putting b = c into the above equation, we get $\phi_{ab}\phi_{b1} = 0$. If $\phi_{ab} = 0$, then it is easily seen that the rank of (ϕ_{ij}) is not greater than 2 and it is contrary. If $\phi_{b1} = 0$, then it follows from (2.6) that $\xi_1^2 = 1$ and it also contradicts. Substituting (3.11) into (3.9), we have

(3.12)
$$A_{ab} = \frac{\alpha - A_{11}}{1 - \xi_1^2} \xi_a \xi_b + \frac{\hat{\alpha}}{\alpha} \nu_a \delta_{ab}.$$

Substituting (3.11) and (3.12) into (3.5), we also obtain

$$c(\phi_{ac}\phi_{b1}-\phi_{a1}\phi_{bc}+2\phi_{ab}\phi_{c1})=rac{\hat{lpha}}{lpha}rac{lpha-A_{11}}{1-\xi_1^2}(\xi_a
u_b\delta_{bc}-\xi_a
u_a\delta_{ac})\xi_1,$$

from which

(3.13)
$$\phi_{ac}\phi_{b1} - \phi_{a1}\phi_{bc} + 2\phi_{ab}\phi_{c1} = 0 \text{ for } c \neq a, b.$$

If we multiply (3.13) by $\xi_b(b \neq c)$ and make use of (2.5) and (2.6), then we have

(3.14)
$$(\phi_{ab}\xi_b + \phi_{a1}\xi_1)\phi_{b1} = 0 \text{ for } a \neq b.$$

If $\phi_{ab}\xi_b + \phi_{a1}\xi_1 = 0$ for $a \neq b$, then it is easily seen from the multiplication of this equation by ξ_b that $2(n-2)\phi_{a1}\xi_1 = 0$. Therefore (3.14) implies that $\phi_{a1} = 0$ or $\phi_{b1} = 0$ for $a \neq b$. If $\phi_{a1} = 0$ for any index a, then we get $\xi_1^2 = 1$ and it is contrary. Therefore there are some entries such that $\phi_{a1} \neq 0$. But (3.14) shows that there is only one non-zero entry, say $\phi_{21} \neq 0$. Putting $a, b \neq 2$ and c = 2 into (3.13), we have $\phi_{ab} = 0$ for $a, b \neq 2$. This implies that the rank of (ϕ_{ij}) is not greater than 2, and it also contradicts. Thus this completes the proof.

PROOF OF THEOREMS. Theorem 1 follows from Lemmas 3.1 and 3.2, and Theorem 2 is immediate from Theorems 1 and A.

References

- [1] Y.-W. Choe, H. S. Kim, I.-B. Kim and R. Takagi, Rigidity Theorems for real hypersurfaces in a complex projective space, Hokkaido Math. J. 25 (1996), 1-19.
- [2] I.-B. Kim, B. H. Kim and H. Song, On geodesic hyperspheres in a complex projective space, Nihonkai Math. J. 8 (1997), 29-36.
- [3] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
- [4] Y. J. Suh and R. Takagi, A rigidity for real hypersurfaces in a complex projective space, Tôhoku Math. J. 43 (1991), 501-507.
- [5] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
- [6] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I; II, J. Math. Soc. Japan 27 (1975), 45-53; 507-516.

Seong-Baek Lee and Nam-Gil Kim Department of Mathematics Chosun University Kwangju 501-759, Korea

In-Bae Kim Department of Mathematics Hankuk University of Foreign Studies Seoul 130-791, Korea

Seong Soo Ahn Department of Mathematics Dong Shin University Naju 520-714, Korea