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A RIGIDITY THEOREM FOR REAL HYPERSURFACES
IN A COMPLEX PROJECTIVE SPACE

SEONG BAEK LEE, IN-BAE KiIM,
NAM-GiIL KIM AND SEONG SO0 AHN

ABSTRACT. The purpose of this paper is to prove a rigidity theorem
for real hypersurfaces in a complex projective space.

1. Introduction

Let P,(C) be a n-dimensional complex projective space with Fubini-
Study metric of constant holomorphic sectional curvature 4c. It is an
open question whether a real hypersurface in P, (C) has rigidity or not.
More precisely, if M is a (2n — 1)-dimensional Riemannian manifold
and ¢,/ are two isometric immersions of M into P(C), then are ¢ and
¢ congruent ? To this problem, Y.-W. Choe, B. H. Kim, H. S. Kim, H.
Song, Y. J. Suh, R. Takagi and the second author gave some partial
solutions (see (1], [2] and [4]). On the other hand, R. Takagi ([5] and [6])
classified all homogeneous real hypersurfaces in P,(C) which are orbits
under analytic subgroups of the projective unitary group PU(n + 1)
in P,(C). These homogeneous real hypersurfaces in P,(C) are locally
congruent to one of the six model spaces of type A1,42, B,C,D and
E (for details, see Theorem A in [5]). An almost contact structure is
naturally introduced on a real hypersurface in P,.(C) from the complex
structure of P,,(C), and all the structure vector fields of the model spaces
are principal directions of the spaces. The purpose of this paper is to
give a partial solution of the rigidity problem mentioned above . Namely
we shall prove
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THEOREM 1. Let M be a (2n—1)-dimensional Riemannian manifold,
and let ¢ and ¢ be two isometric immersions of M into P,(C)(n > 3).
If the structure vector fields of [ and ¢ are principal directions, then the
two structure vector fields coincide up to sign on M,

THEOREM 2. Let M be a (2n —1)-dimensional Riemannian manifold,
and let i and ¢ be two isometric immersions of M into P,(C)(n > 3).
If the structure vector fields of I and ¢ are principal directions and the
type number of (M,i) or (M, ) is not equal to 2 at every point of M,
then i and ¢ are rigid, that is, there exists an isometry ¢ of P, (C) such
that ¢pot = i.

2. Preliminaries on real hypersurfaces

Let ¢ be an isometric immersion of a (2n —1)-dimensional Riemannian
manifold M into the complex projective space P,(C) with the metric of
constant holomorphic sectional curvature 4c. For a local orthonormal
frame field {ej,e2,...,e2n-1} of M, we denote its dual 1—forms by 6;.
Then the connection forms 6;; and the curvature forms ©;; of M are
defined by

(2.1) db; +> 0,70 =0, 6;+6; =0,

(2.2) eij = deij + Zf)ik VAN ()kj

respectively, where and in the sequel the indices ¢, 7, k,1, ... run over the
range {1,2,...,2n — 1}, unless otherwise stated. We denote the compo-
nents of the shape operator or the second fundamental tensor A of (M, ¢)
by Aij, and put 9; = ) A;;0;. The rank of A is called the type number
of (M,¢). For the complex structure J of P,(C), we put Ji; ot = ¢;
and Jop; ot = &. Then we have the equations of Gauss and Weingarten

(2.3) O = Vi Ny + b ANO; + CZ(¢ik¢jl + GijPr1) b A Oy,

(2.4) dpi + > i A=Y (E;duk + Eichyk)0; A Ok
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respectively, where (¢;;,&x) is the almost contact structure on M. £ =
(&) is called a structure vector field of ¢. The tensor fields A = (A; )¢ =
(¢s;) and € = (&) on M satisfy

(2.5) Aij = Aji,  dij = —dju,

(2.6) D it = —8i; + &i&j, D =0, Y =1,

(2.7) dei; = Y (GikOr; — Gjxbis) — Ei + €5,

(2.8) dé: = > (&6 — bsis).

For another isometric immersion £ of M into P,(C), we shall denote
the differential forms and tensor fields of (M, i) by the same symbol as
ones in (M,¢) but with a hat. Since the canonical 1—forms, connection
forms and curvature forms are independent of the choice of immersions,
it follows from (2.3) that

2.9 AicAji — AuAjk + c(Pirdji — Pudje + 2¢i;dx1)
. = A Ay — AuAji + c(dindjs — Gt + 20i;bri)-

As for the rigidity of (M,:) and (M,i), the following is known and
will be used later.

THEOREM A ([1]). Let M be a (2n — 1)~ dimensional Riemannian
manifold, and [ and ¢ be two isometric immersions of M into P, (C)(n >
3). If the two structure vector fields coincide up to sign on M and the
type number of (M,i) or (M,.) is not equal to 2 at every point of M,
then i and ¢ are rigid, that is, there exists an isometry ¢ of P,(C) such
that ¢ot = 1.
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3. Proof of Theorems

Since the structure vector fields ¢ of ¢ and € of i are principal direc-
tions, we have

(3.1) > A =at and Y Ayé; = 66

It is known ([3]) that the principal curvatures o and & are constant on
M. Since A = (A;;) is a symmetric matrix and ¢ is a principal direction,
we can choose a local orthonormal frame field {e; = £, es, wy€ap_1} of
M such that A is diagonalized with respect to the frame field, that is,

(32) /iij = 1/,-51-]',

where v; are principal curvature of i(M) and v, = é&. It follows from
this frame field and (2.6) that

(3.3) =1, &=0 and @i =0,

where and in the sequel the indices a, b, c, .. run over the range {2,3,...,2n
—1}. From (2.9) and (3.2) we have

(3.4 AirAji — AuAji + C(dh’kffsjz - ¢il¢ijkﬁ+ 2¢ij¢fkl)ﬂ
=viVj(8udji — daljk) + c(Gikdji — Pudik + 2Pkt

Putting ¢ = a,j = b,k = cand [ = 1 into (3.4) and using (3.3), we obtain
(3.5) AgcApt — AarAse + S(Pactbr — Pa1Pbe + 20apPe1) = 0.

If we multiply (3.4) by & and use (2.6) and (3.1), we get

o(Pin Y bk — bk > Puy + 26y > buk)

(3.6)
=a(& A — &iAjr) + vi€vibix — vi€ivibi.

Now we shall prove
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LEMMA 3.1. If the principal curvature o vanishes on M, then the
two structure vector fields &€ and € coincide up to sign on M.

PROOF. It follows from a = 0 and (3.6) that
(3.7) Pir Y bk — b > ubi + 29y > ub = 0(k #1,5).
Multiplying (3.7) by & and summing up it for i(# k), we have
(3.8) (D Pirt — i) Y duky = 0(i # j)

by use of (2.5) and (2.6). If 3" ¢sxéi — éﬂgz = 0 for 4 # j, then, by
summing up for i(# j), we obtain (2n — 3) 3" ¢;x€x = 0. Therefore (3.8)
implies that

Z&ikfk =0 or Z(]Aﬁjk&c =0 for ¢ # 7.

If there are non-zero components of the vector field ¢, then (3.8) shows
that there is only one non-zero component of @€, say > Pokkr # 0. By
putting ¢,7 # 2 and k = 2 into (3.7), it is easily seen that

éijzo for l,];ﬁQ

This means that the rank of (qﬁ,]) is not greater than 2. Since the
rank of (¢U) is equal to 2n — 2 > 4, the above argument is contrary.
Thus all the components of ¢>§ vanish, that is, ¢£ = 0 on M. This shows
that ¢ = +£, and completes the proof. |

From now on we consider the case where the principal curvature o
does not vanish on M. Putting i = a,k = b and j = 1 into (3.6) and
using (3.3), we have

(3.9) €1Aap — EaAby = galuaaab.

If we multiply (3.5) by £ and make use of (2.5), (2.6) and (3.1), then
we obtain

(3.10) §aApr = &pAar.
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LEMMA 3.2. If the principal curvature « does not vanish on M, then
the two structure vector fields € and £ coincide up to sign on M.

PROOF. Assume that the two structure vector fields ¢ and é do not
coincide on M, that is, £ # 1 on M. Then, multiplying (3.10) by &,
and using (3.1), we obtain

(3.11) Ao = 25 '2;1&161

We see from (3.11) that & # 0 on M. In fact, if &, = 0 on M, we have
Ag1 = 0 for any index a. It follows from (3.5) that

¢ac¢b1 - ¢bc¢a1 + 2¢ab¢c1 = 0.

Putting b = c into the above equation, we get ¢ordp1 = 0. If ¢gp = 0,
then it is easily seen that the rank of (¢;;) is not greater than 2 and it
is contrary. If ¢p; = 0, then it follows from (2.6) that 512 =1 and it also
contradicts. Substituting (3.11) into (3.9), we have

An

_1—"2_§a§b + Va5ab

Substituting (3.11) and (3.12) into (3 5) we also obtain

(3.12) Agp =

—A
(PacPp — Pa1Pbc + 20apde1) = 511 (Eat10be — Eavabac)él,
1
from which
(313) ¢ac¢b1 - ¢a1¢bc -+ 2¢ab¢cl =0 for = 75 a, b.

If we multiply (3.13) by &(b # ¢) and make use of (2.5) and (2.6), then
we have

(3.14) (Pable + Pa1€1)P1 = 0 for a #b.

If pabbp+Pa1€1 = 0 for a £ b, then it is easily seen from the multiplication
of this equation by &, that 2(n — 2)¢,1& = 0. Therefore (3.14) implies
that ¢,1 = 0 or ¢y = 0 for @ # b. If ¢o; = 0 for any index a, then
we get £ = 1 and it is contrary. Therefore there are some entries such
that ¢,1 # 0. But (3.14) shows that there is only one non-zero entry,
say ¢21 # 0. Putting a,b # 2 and ¢ = 2 into (3.13), we have ¢q5 = 0 for
a,b # 2. This implies that the rank of (¢,;) is not greater than 2, and it
also contradicts. Thus this completes the proof. [l
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PROOF OF THEOREMS. Theorem 1 follows from Lemmas 3.1 and 3.2,
and Theorem 2 is immediate from Theorems 1 and A.
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