초록
E. M. Silvia introduced the class $S^\lambda_\alpha$ of $\alpha$-spirallike functions f(z) satisfying the condition $$ (A) Re[(e^{i\lambda} - \alpha) \frac{zf'(z)}{f(z)} + \alpha \frac{(zf'(z))'}{f'(z)}] > 0, $$ where $\alpha \geq 0, $\mid$\lambda$\mid$ < \frac{\pi}{2}$ and $$\mid$z$\mid$ < 1$. We will generalize Silvia class of functions by formally replacing f(z) in the denominator of (A) by a spirallike function g(z). We denote the new class of functions by $Y(\alpha,\lambda)$. In this note we obtain some results for the class $Y(\alpha,\lambda)$ including integral representation formula, relations between our class $Y(\alpha,\lambda)$ and Ziegler class $Z_\lambda$, the radius of convexity problem, a few coefficient estimates and a covering theorem for the class $Y(\alpha,\lambda)$.