COSYMPLECTIC CONFORMAL CURVATURE TENSOR AND SPECTRUM OF THE LAPLACIAN IN COSYSMPLECTIC MANIFOLDS

  • Kwon, Jung-Hwan (Department of Mathematics Education, Taegu University) ;
  • Cho, Kwan-Ho (Department of Mathematics Education, Taegu University) ;
  • Sohn, Won-Ho (Department of Mathematics Pusan University of Foreign Studies)
  • Published : 1997.04.01

Abstract

The purposer of this paper is to study the spectrum of the Laplacian and the cosymplectic conformal curvature tensor of cosymplectic manifold.

Keywords

References

  1. Le Spectre d' une Variete Riemannienne v.194 Lecture Notes in Mathematics M. Berger;P. Gauduchon et;E. Mazet
  2. J. Differential Geometry v.1 The theory of quasi-Sasakian structure D. E. Blair
  3. Bull. Korean Math. Soc. v.9 Cosymplectic manifolds of constant ?-holomorphic sectional curvature S. S. Eum
  4. J. Korean Math. Soc v.15 On the cosymplectic Bochner curvature tensor S. S. Eum
  5. J. Kyungpook Math. v.35 On the Cosymplectic Conformal Curvature Tensor J.-H. Kwon;J. D. Lee;K.-H. Cho;W.-H. Sohn
  6. J. Differential Geometry v.4 Submanifolds of cosymplectic manifolds G. D. ludden
  7. Nihonkai Math. J. v.3 On the spectrum of the Laplacian in cosymplectic manifolds J. S. Pak;J. -H. Kwon;K. -H. Cho
  8. J. Indian Math. Soc. v.34 Curvature and the fundamental solution of the heat operator V. K. Patodi
  9. Tohoku Math. J. v.25 Eigenvalues of the Laplacian of Riemannian manifolds S. Tanno
  10. Tensor N. S. v.33 On the spectrum of the Laplace operator for the exterior 2-forms Gr. Tsagas
  11. TRU Math. v.15 Eigenvalues of the Laplacian of Sasakian manifolds S. Yamaguchi;G. Chuman