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ON SOME BASIC PROPERTIES
OF THE INHOMOGENEOUS
QUASI-BIRTH-AND-DEATH PROCESS

KYUNG HYUNE RHEE AND C. E. M. PEARCE

ABSTRACT. The basic theory of the quasi-birth-and-death process is
extended to a process which is inhomogeneous in levels. Several key re-
sults in the standard homogeneous theory hold in a more general context
than that usually stated, in particular not requiring positive recurrence.
These results are subsumed under our development. The treatment is
entirely probabilistic.

1. Introduction

We consider a countable, irreducible, recurrent Markov chain whose
one-step transition matrix P is of block-Jacobi form, that is, P may be
partitioned as
B[) C() 0 0
Ay By C; 0
= 1.1
P 0 A, By, Cy --- |7 (1.1)

where the diagonal matrices B; are finite and square but not necessarily
of the same size.

A Markov chain prescribed by a transition matrix of form (1.1) for
which

B;=B and C;=C for i>1 and A;=A for ¢>2 (1.2)

is usually termed a quasi-birth-and-death process (QBD). The same term
is used also for the corresponding continuous-time process for which
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the infinitesimal generator Q* admits such a decomposition (1.1) with
appropriate components satisfying (1.2). We take up the continuous-
time version in Section 4.

Such processes have been extensively studied since the seminal work
of Evans [6] and Wallace [19] and its significant development by Neuts
(see [15] for a comprehensive account). The algorithmic solution, which
possesses what is usually termed a matrix-geometric form, has made use
of three matrices G, R and U, relations between which were derived by
Hajek [7] and Latouche [12]. The most efficient solution to date has
been provided recently by Latouche and Ramaswaimi [13], who also list
a rich variety of interesting applications in the literature. Under a condi-
tion of level-crossing information completeness an slternative geometric
prescription is given by Beuerman and Coyle [2] (see also [1], [4], [5]).

The solution of the case in which (1.2) fails to hold but the matrices in
(1.1) are all m x m has been considered by the author in an earlier article
[16] by rather different methods. The solution procedure of [16] arises
out of an exploration of some basic relations between multi-term linear
recurrence relations and extended continued fractions. See also Hanschke
[8,9] for the use of the continued fraction method on the repeated call-
attempt and related problems. A general class of these problems is also
treated by Hanschke using generalized continued fractions in [10].

In this paper we extend the basic solution parameters G, R and U
to cover the inhomogeneous quasi-birth-and-death process (IQBD). In
the next section we show that in their place there are sequences (R,);>o,
(Gi)i>1 and (U;)i>1. These carry over the probabilistic interpretations
of the QBD case and the arguments required often parallel closely those
of that case. Where appropriate we give outlines only of the proofs
involved.

In the sequel the partitioning

v = ("UO./U],'UQ,"')

of an infinite row vector will be assumed conformable with (1.1) without
further comment. Similarly we write

€ = (607615027”')7‘1



On some basic properties of the inhomogeneous 179

where e is the infinite column vector each of whose entries is unity. As
the order is always clear from the context we represent identity matrices
generically by I and zero vectors by 0.

2. Basic Parameters

In accordance with customary usage, if the submatrix B, occurs in
rows and columns r, 741, - ,r+s of P, we refer to states r,r+1, -+, r+s
as being the phases 0,1, . s in level 7. The state r + j is also specified
in terms of its level and phase as (¢,7). By (1.1), the process is then
skip-free in levels.

2.1 THE RATE MATRICES R;. In the customary notation (see Chung
[3]), let ,~P§;3i+k’u be the taboo probability that, starting in (z, ), the
chain visits state (i + k,v) at time n without returning to level i in

oo
between. For & > 1, the sum Z ,-Pi(';,)l— 4+, then represents the mean

n=1

number of visits to (i + k, v) before returning to level 7, given the chain
starts in (7, 7). We define R(7,7+ k) to be the matrix (in general rectan-
gular) with this quantity as its (j,v) entry and set R; = R(i,7 + 1). We
remark that by a well-known result of Markov chain theory (see Karlin
[11, Chapter 5, Theorem 3.3]) the matrices R(i,i + k) must be finite
whenever the Markov chain is recurrent, although in the QBD context
this property is usually stated only in the positive recurrent case.

LEMMA 1. If the chain is recurrent, then for I > 1

R(s,i+k) = RiRiy1-- Rizi-1.

PROOF. Arguing as in Neuts [15, Lemma 1.2.2| with careful attention
to levels, we derive

R(i,i+k) = RG,i+k—1DRi+k-1,i+k),

whence the result follows by induction. [J
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LEMMA 2. If the chain is recurrent, then the matices R; satisfy the
recurrence relations

R, = Ci;+ R;Biy1+ RRi41Ai42 (1 20).

Proo¥. Application of the theorem of total probability for passage
from level ¢ to level 1 + 1 in n steps with ¢ a taboo level, followed by
summation over n yields

Ri = Ci+ R(i,i + 1)Biy1 + R(i,i + 2)A;p2 (i > 0).

The claim now follows from Lemma 1. O

THEOREM 1. If the chain is recurrent and X = (7,21, - - ) a positive,
left-invariant vector, then

Ti41 = J’?,‘Rz‘ (ZZO)

PRrOOF. By the theorem of total probability the n-step transition
probability from state (z + 1, ) to itself can be decomposed for n > 1 as

(n) (n (r) (n r)
Pi+1,j;i+],] =i P1+1]1+1]+ZZP1+]]1V g i1, (21)
v

The sum of the leading term on the right-hand side over n from 1 to m
tends to a finite limit as m — oo while the corresponding sum for the
left-hand side diverges. Hence

{n)
Z Pl+1 Jittl,g

n=1
m

E : z+1,1,1+111

— 0 asm — oc.

Further, with the customary taboo notation

m
ZPI(-C} WJit v
sz(:i,] i+1,5

n=1
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(see Karlin [11, Chapter 5, Theorem 2.2]), while

(n)
Zipz‘,u;z‘+1,j = (Ri)u,j-

n=1

Hence by a basic convolution result (see Karlin [11, Chapter 5, Lemma
2.2]) we deduce from (2.1) that

1 = Zi—}—l,jpit}-l,j;i,u(Ri)u,j- (2.2)

v

By Karlin (11, Chapter 5, Theorems 3.3 and 3.4] an irreducible, re-
current Markov chain has (up to a scale factor) a unique positive left-
invariant vector

v = (vg,v1, ).

Normalized to (vi4+1); = 1, its version in our context can be written as

(.Uk)l) = i+1iji*+l,j;k,p ((kﬂp)#(['*'la.]))

Hence if x is an arbitrarily-scaled version of v, then (2.2) reads

(.IJ,‘+1)]' == Z(l‘i)u(Ri)U,]-‘

v

and the theorem follows. O

2.2 THE FUNDAMENTAL MATRICES G;. For : > 1, let G; be the
matrix whose (7,k) entry is the probability that, starting from state
(¢,7), the process eventually reaches level 1 — 1 and enters it at phase k.
The results of the next lemma are just the theorem of total probability
applied to first passage probabilities from states in level 7 to level ¢ — 1
with and without taboo levels and do not require recurrence or even
irreducibility of the chain.
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LEMMA 3. The fundamental matrices G; satisty the recursive rela-
tions

G; = A+ B,Gi+CiGip1G; (1 >0).

If NG, 1s the probability matrix corresponding to G; when N(> 1) is
also a taboo level, then

NGN-1 = Anv_1+By_1.nGNoa,
NG = Ai+BNGi+CinGi NGy (<1< N -1).

RRMARK. By asimple probabilistic argument the sequence (vG;) n>;
is monotone non-decreasing entrywise with increasing N and yG,; T G
as N — oc.

Lemma 3 provides a scheme for the numerical calculation of G;.
Choose N large, where ¢« < ¢ < N — 1. Since nyGy is substochastic,

By nGeer—y < Byey,

where inequality is interpreted entrywise. By the irreducibility of P
the matrices By_, and By + C;.ny Gy are strictly substochastic. Hence
I-Byn_yand I—By—Cy.nGyq1 are invertible and we have the recursion

NGn_y =T —Bn_1) "Ay_1,
NGg = (I— B, — Cg.NGH,l)_lA(g (i <<f< N-1)

for the successive determination of NG n_1, NGN-2,.... nG;. The in-
verses will have nonnegative entries, so the recursion does not suffer
numerical errors induced by subtractions.
For € > 0 suitably small, the fundamental matrices may be calculated
with
lleici — nGieimi|] < €

as a stopping criterion.

2.3 THE MATRICES U;. For ¢ > 1, let U; be the matrix whose (j,v)
entry is the probability, with : — 1 as a taboo level, that starting from
(7, j) the chain eventually revisits level i and enters it through (i,v).
Clearly U, is always strictly substochastic. We have the following result.
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THEOREM 2. If the chain is recurrent, then

R, =Ci{(I-Uiy)™" (120),

Gy =(I-U)"4 (1>21),

Ui = Bi+CiGiy1 = Bi+ RiAiy (1 2 1),
R; = Ci(I — Biy1 — Ciy1Giy2)™' (1 20),
G, =(I-B;,~RiAip1) "4 (i>1),

Ui =B+ Ci(I-Uyy) "Aipy (121),

PROOF. The first three relations follow by the argument of Section 1
of Latouche [12], giving due care to the level labellings. The remaining
three relations may then be deduced from them.

The last relation may also be deduced directly from a probabilistic
argument similar to the others given by Latouche. [

Much as for the quantities G; there is an iterative procedure for the
determination of the U;. Set nU,; for the probability matrix correspond-
ing to U; when level N is also taboo. Then we have

~nUn_1 = Bn_1,
NUe = Be+ Co(I — nUpy) 7' Agsy (1 <L <N - 1).

3. Equilibrium distribution of probability

The chain is recurrent if G is stochastic for some value of 7, in which
case G; is stochastic for all i. In the case of positive recurrence we may
proceed to calculate the ergodic probability vector

T = (7T(),7T1,"').

The fundamental matrices may be calculated as noted in Section 2.2
and the rate matrices then determined in accordance with Theorem 2.
A more numerically effective procedure is available using a technique of
Latouche and Ramaswami [13]. This is outlined in Section 5.
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THEOREM 3. For a recurrent chain

(a) the matrix By + RygA; is stochastic;
(b) in a positive recurrent chain the vector m, is a positive, left-
invariant eigenvector of By + Ry A normalized by

o eg-i—ZRoR] "'R,‘C,‘+1 = 1. (31)

=0

PROOF. Since return to level 0 is certain for any initial state (0, ),
the theorem of total probability provides

Y (Bodiw+ 3D 0Psja (A, =1 Vi
v v P

on conditioning on the last state entered before level 0 is reached. That
1s,

(Bo+ RoAi)en = e

and (a) is proved.
With positive recurrence, Theorem 1 gives

T, = mply-- Ry (izl)-

Relation (3.1) is thus merely the standard normalization condition re-
quired for positive recurrence.
Further, the global balance conditions provide

wg = woBy+ mA;.
Substitution of mg Ry for 7, completes the demonstration of part (b). O
Since P is stochastic, we have
Boeg + Coer = e, (3.2)

Aiei_1 + Bie; + Cieipy = ¢e; (12> 1). (3.3)

Hence

(Bo + RoAi)eq = (eg — Coer) + Ro(er — Brey — Crea),
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so that by Theorem 3
Roer = (Co + RoBi)er + RoChes.
Also from Lemma 2
Roe; = Coper + RoBier + RoR 1 Agey.
A comparison of the last two equations provides
RyCiey = RoR;Aje;. (3.4)
Similarly we have from (3.3) that for each m > 1

(Bo + RoAy)eg = (eg — Coeq) + Ro(eq — Brey — Cleyg)

+ Z RoR;y - Ri(eit1 — Aiz1ei — Bigreip1 — Cigreiy)
i=1
= (60 + Z Ry - 'Ri€i+1) —(Co+ RoB; + RoR1Aj)eq
i=0

— Z Ro---Ri(Cit1 + Riy1Bijo + Rij1 RigaAiys)eiqs

—Ry--- Rm_10m€m+l — Ry - Rm(Bm+1(1m+1 + Cm+16m+2)

m m—1
= (60 + ZRO - 'Ri€i+l) - Z Ry Rieiq
i=0 i=0
— Ry R 1Cremyr — Ro - Rn(Brmg1¢m+1 + Cmt1€my2)-
By Theorem 3 this simplifies to
Ry Rpemyr1 =Ro- R 1(Cremt1+ R Bm1€mt 1+ RmCrmti16ms2),
and Lemma 2 provides much as before that
Ry -  RnCrmtyiemiz = Ro-- Rmy1Ami26my1. (3.5)

Taken together, (3.4) and (3.5) may be interpreted to give the following
result.
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COROLLARY. Suppose the chain is recurrent and starts at any state
in level 0. Then for each i > 0, the mean number of crossings from level
t + 1 to level ¢ before the first return to level 0 equals the mean number
of crossings in the reverse direction.

This result has been noted for a QBD case by Neuts in connection
with (1.2.20) in [15].

4. Inhomogeneous QBDs in continuous time

Suppose an irreducible, stable, conservative Markov process in contin-
uous time has infinitesimal generator Q* which may be ascribed a block
partitioning

By C;y 0 0
Q" = A} BY Cf O
0 A} B; C;

The off-diagonal elements of Q* are nonnegative and the diagonal ele-
ments strictly negative. We have also

BS‘C()+C’8{F] = 0, (41)

A:Ei—l + B:‘Ci + C;C,'_H =0 (Z > 1) (42)

The analogue to the process P’ considered by Neuts [15, Section 1.7]
need not be defined as sup, max;(—B}), ; may happen not to be finite.
However we may work in terms of an analogue to the other auxiliary
process used by Neuts.

Put A; = —diag B (: > 0) and
Ai=A7'AY, Bi=A7'Br+1, C;=A7'Ch

With these block entries, the matrix P given by (1.1) then represents the
one-step transition matrix of the process considered immediately after
its successive transitions. We verify readily that (4.1), (4.2) translate
into (3.2) and (3.3).
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Suppose that P is recurrent. If its rate matrices are R; (z > 0) and
its positive, left-invariant vector x, define

R} = AiRiAi__:l and z) = ;ciAi_l.

Since P is the jump chain of Q*, by a result of Pollett and Taylor [17]
the recurrence of P implies the regularity of @*. As X is a positive,
left-invariant vector of P, it satisfies the global balance equations

rg = xoBo + 2,41,

;i =2;1C_1+x;Bi + vip1Aipr (2> 0),

which translate into
zoBg +27A7 =0,
2r O+ a!Bl+ i AL, =0 (1> 0).

Hence x* is a positive, left-invariant vector of Q*. If

>

hEfoe,-<oo,

=0

then by a result of Miller [14] the regularity of @* implies that the mini-
mal process corresponding to Q* is positive recurrent and has stationary
distribution of probability h~1x*.
We remark that the relations
(Bo + roA1)eq = eq,
zo(Bo +rod1) = zo,
Tip1 = z;R;

translate repectively into

(Bg + RgAQ)eo
zo(Bj + RyA7)

* S >

I

0,
0,
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5. The efficient calculation of G; and R;

We have noted already how the quantities G; may be calculated. The-
orem 3 provides a means of deriving the other kev quantities used to
complete the solution of the IQBD wia Theorem 2. Rather more efficient
means exist. A substantial paper of Latouche and Ramaswami [13] in-
vestigates how this may be done for a QBD and cites earlier literature
on this question. (See also Ramaswami [18] for an elegant extension to
block-M/G /1 systems of an idea of Burke.) It is not our present in-
tention to treat this question in depth for an IQBD. We shall, however,
indicate in outline how the use of one of the seminal ideas of [13] leads
to explicit formulae for the G; and R;, respectively.

Let P be an irreducible IQBD partitioned according to (1.1). For
¢ > 0 and n > 1, let A;(2n) denote the matrix whose (j,¢) entry is
the probability that starting in state (¢2"71, ), the IQBD reaches level
(1 — 1)27~1 before lexel (1 +1)2"~1 and enters it through phase ¢. For
¢ 2 0and n > 1, C;(2n) denotes the corresponding matrix with the roles
of levels (¢ — 1)2™"~1 (7 + 1)2"! reversed. Then the matrix

0 Co(2n) 0 0
A2n) 0 Cy(2n)

Pen) =177 A(2n) 0 Co(2n)

is evidently the transition matrix of an IQBD.
If we observe P(2n) at its evenly-labelled levels, we derive a new IQBD

By(2n+1) Cy(2n+1) 0 0
1 AI2r+1) Bi(2n+1) Ci(2n+1) 0
P(2n+1) = 0 Ax(2n+1) By(2n+1) Ca(2n+1)
with

Ai(2n+1) =A2(2n)Aq;1(2n) (i > 1),

By(2n + 1) =Cy(2n)A,(2n),
Bi(2n 4+ 1) =C2i(2n)Ag;41(2n) + A2;(2n)Cqi_1(2n) (i > 1),
Ci(2n 4+ 1) =C3;(2n)C2:41(2n) (i > 0).
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Further observing of P(2n + 1) at instants of change of level provides
an IQBD which is seen easily to be P(2n + 2) and is given by

A(2n+2)=[1-B,2n+1)]7'4;2n +1) (i > 1),
Ci(2n+2) =[I — B;(2n + 1)]7'Ci(2n + 1) (i > 0).

From the definition of P(2), the original IQBD P can be represented
in this sequence of processes as P(1).

The fundamental matrices of these processes are simply related. For
i >0, n > 1 write G;(n) for the fundamental matrix of P(n) correspond-
ing to level i. Then by obvious probabilistic arguments

G(2n+1) = Gi(2n+2) (12>1), (5.1)

G2i+](2n) = A2i+1(2n) + CQH,I(Q'H)GH_](Z’)Z + 1) (l Z 0). (52)
G2:(2n) = Agi(2n) + C2:i(2n)G2i+1(2n)G2:(2n) (i > 0). (5.3)
On setting ¢ = 0 in (5.2), we have via (5.1) that

G1(2n) = Ai1(2n)+ C1(2n)G1(2n + 2).

A simple induction gives for each m > 1 that
G, = Gi(1) > Ay +ch Oy (20) A (2 + 2).

The right-hand side represents G, for k = 2™*! and so converges to
the left-hand side as m — oco. Hence we have

G, = +ZC] Oy () AL(2i + 1).
A similar argument provides

Gi(2n) = Ai(20)+ ) Ci(2n)C1(2n+2) - C1{20)A1(2042) (n 2 1).

(5.4)
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We have further from (5.1)-(5.3) that

G2i+1(2n) = A2i41(2n) + Cri41(2n)Gi41(2n +2) (i > 0),
GQ,‘(ZTI) = [I - Cgi(zn)GQi_H(2”)]—11421‘(27!,).

These two relations may be used in a finite recursion to derive G;(=
Gi(2)) in terms of some G1(2n) (n > 1), which may then by evaluated
from (5.4). That is, for odd j, the first one of the above equations gives
G2i+1(2n) in terms of G,;y1(2n + 2), and for even j, the second one
gives G9;(2n) in terms of Gy;1,(2n) and so by the first one in terms of
Gi+1(2n + 2), which has a lower subscript. So in either case, for j > 2,
we get G;(2n) in terms of G(2n + 2) with &k < j.

We have also similar arguments to R;(n) for the recursive expression
which is probabilistic, and they are given by the foliowing equations.

Ri2n+1) = Gi(2n+2) (i >0), (5.5)

ot

Ryi11(2n) = Coip1(2n) + A2i1 (2n)R;(2n + 1) (1 > 0), (
Rzi(Qn) = Cz,(2n) -+— Agi(2n.)R2i_1(2n)R2,-(2n) (2 Z 1) (

6)
7)

(W2}
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