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INTER-CONVERSION BETWEEN THE
POWER AND ARNOLDI’'S METHODS

P1L SEONG PARK

ABSTRACT. We present a couple of tools that can be used in the solution
of nonsymmetric eigenvalue problems. The first one allows us to convert
power iterates into Arnoldi’s results so that a few eigenpairs are easily
obtainable. The other converts Arnoldi’s results into power iterates to
simulate the power method and improve the result. Suggestions for
application are also given.

1. Introduction

Many problems in science and engineering require computation of one
or a few eigenvalues with the largest modulus of a large sparse nonsym-
metric real matrix. From the numerical point of view, nonsymmetric
problems are substancially more difficult to solve than the symmetric
ones.

For accelerating linear iterative methods for solving large nonsymmet-
ric linear systems, extensive work has been devoted to polynormial-based
acceleration techniques, the basis of which is the power method. Most
of them use Chebyshev polynomials to accelerate convergence(e.g., see
(2, 4, 5, 6, 10]).

Saad [8] adapted Manteuffel’s linear system algorithm to nonsymmet-
ric eigenvalue problems Ax = Ax using a Chebyshev polynomial over an
ellipse containing all of the eigenvalues except the desired one. Com-
bining with Arnoldi’s method, the algorithm can also be used to obtain
several eigenpairs simultaneously, if the ellipse is chosen not to include
the corresponding eigenvalues. However, because of its inherent prob-
lem, like its symmetric counterpart Lanczos method, Arnoldi’s method
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itself is subject to severe cancellation errors. In addition, to check con-
vergence and to determine when to stop, iterative algorithms normally
require some power iterates anyhow.

In this paper, we introduce a couple of tools that may be used in vari-
ous ways to get better performance of some algorithms for nonsymmetric
eigenproblems. That is, we first devise a method that can compute ex-
act Arnoldi’s results from power iterates so that it is far less sensitive to
cancellation errors because it uses orthogonal triangularization. Then we
devise a method for the reverse way so that the Arnoldi’s result can be
used to simulate the power method and improve the obtained solution.
Both of them do not require costly matrix-vector multiplication with the
original large matrix but some small amount of work with matrices far
smaller than the original.

We first review Arnoldi’s method briefly. Then we derive the two
tools that can be used to enhance convergence of the algorithms for
nonsymmetric eigenvalue problems. Suggestions for application are given
at the end.

NOTATIONS. We denote the identity matrix of order n by I,,. Some-
times we use superscripts in parentheses to denote the related dimension.
For example, /\Em) is the zth eigenvalue of some m x m matrix, and e;m)

1s the jth unit vctor of dimension m.

2. Arnoldi’s method

Arnoldi’s method, first introduced in [1], is a nonsymmetric variant
of Lanczos algorithm. The algorithm generates a sequence of upper
Hessenberg matrices whose eigenpairs are good approximations to a few
of those of the original matrix A.

Starting with some initial vector v, of Euclidean norm 1, the method
generates a finite sequence of vectors by the recursion

j
h]‘+1’]‘VJ'+1 :AV]' —Zh,-,_,-vi, ] = 1 ,
1=
where h;;’s are chosen so that v ;Llv;, i =1,....j and |[vj41]]s = L.
The algorithm stops for j <m if hj;y,; = 0.
The following theorem is well-known(for example, see [7]).
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THEOREM 1. Let Vi, = [vi,va, ..., vy

(1) The set {vy,vy,... vy} computed by the algorithm is an or-
thonormal basis of the Krylov subspace K ,, = span{vy, Avy, ...,
Am“lvl}.

(2) The matrix H,, = VITAV,, is an upper Hessenberg matrix with
elements h;;.

(3) The Ritz values of A in K, are the eigenvalues /\Em) of H,,, and
) (m)

, wherey,”’ is an eigenvector of H,,

the Ritz vectors are me,(m

assoclated with /\Em)

(1) is true in exact arithmetic, and 4,V, H € R"*" satisfies an exact
Arnoldi’s relation

(1) H=VTAV or AV =VH.

However in finite precision calculation, Arnoldi’s method is subject to
severe cancellation errors and the set {vi,v2,...,v,,} can be far from
orthonormal. Hence the algorithm should be stopped far before n.

It is quite simple to check step by step whether the desired accuracy is
attained and to stop by checking the residual norm by using the formula

.
1A =AD" = by mlel y ™),

which is a direct consequence of the following equality derived from the
algorithm:

T
AV = Vi Hon + bt mVmgiel™ .

A major limitation of Arnoldi’s method is that its cost and storage
requirements increase drastically as the number of steps m increases.
One simple way to overcome the storage problem is to use an iterative
Arnoldi’s method [7].

The amount of work for each Arnoldi iteration is roughly m matrix-
vector multiplications and the work needed to solve a Hessenberg eigen-
value problem of size m x m. Hence m should be much smaller than the
size of the original problem so that the amount of work for the step is
negligibly small.
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3. Inter-conversion between the power and Arnoldi’s meth-
ods

In this section, we discuss how to convert power iterates into Arnoldi’s
results and vice versa without additional costly matrix-vector multipli-
cations. For this purpose, we need introduce

LEMMA 1. Let x € R"*, 0 = +||x||2, and suppose that x # —oe;.
Let

u=x+oe;, 7= §||u|]%

HU =1—-7n"'uu”, then Ux = —ce;.

PRrOOF. [9]

We take o to have the same sign as the first component of x. The
matrix U annihilates all the components of the vector x except the first
one. It is known as a Householder transformation, and has the property
that it is symmetric, orthogonal, and hence involutory(i.e. U% = I). As
a result, we have

LEMMA 2. Let U € R(*=7+Dx(n=3+1) he 4 Householder transforma-
tion as defined above. Premultiplying a vectorz € R"™ whose last n—j+1
entries are the vector x by the matrix

I+ 0
U]’E I: 101 U]

annihilates all the components of z below the jth one, others above it
being unchanged.

The matrix U; is symmetric, orthogonal, and involutory too. By pre-
multiplying by appropriate U;, j = 1,... ,m consecutively, any matrix
with m columns can be orthogonally upper-triangularized.

Getting Arnoldi’s Hessenberg form from power iterates

Suppose we have applied m power iterations with the matrix A €
R™ ™ to the initial vetor v € R™, and let the results be v, Av, A%v, ...,
A™v. Assume m <« n. We construct an upper Hessenberg matrix
H(™ ¢ R™*™ gatisfying the Arnoldi’s relation (1).
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Let M € R™™™ be the matrix whose columns consist of the power
iterates, i.e.
M =[v,Av,A%v,... [ A" V]

and let
K =[Av, A%, ... ,A™ v v].

Then K = M P, or equivalently,
(2) M =KPT

where P = [e;,... ,€m,€1] € R™*™ is a permutation matrix. Consider
another matrix

(3) K'=[Av, A%v,... ,A™v] = AM.

Since all the columns, except the last one, of A" and KA are the same,
orthogonal triangularization on K and K’ yields

erUm—l s UgUl[Av, AZV, Cee Am_lv,v] = R,
UrUn—y - UUi[Av, A%v, ... , A" v, A™v] = R/,
where U;, j =1,... ,m and U/, are as defined in Lemma 2, and R and
R’ are upper triangular. Letting Q7 = U Uy -+~ UpUy and Q'7 =
Ul Up—1---UUy, we obtain
Q"TK =R, Q'K'=FR
or
(4) K=QR, K =QR,
where ,Q' € R"*™ and R, R’ € R"*™. These are the QR factoriza-
tions(e.g., see [3]) of A" and K.
From (2), (3), and (4),

(5) K' = AM = AKPT = AQRPT.
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In addition, since
Q =UUy... Up U, =QU,U,,
K' can also be written by (4) as
(6) K'=Q'R =QU,U' R

Since only the first m rows of R and R’ are nonzero, the QR factor-
izations of K and K' can be written as

K =QR., K'=QR,

where Q,Q" € R™™™ consist of the first m columns of @ and @', and
R, R'" € R™*™ consist of the first m rows of R and R’', respectively.
Hence, from (5) and (6),

AQRPT = QWR,
where W is the m x m principal submatrix of U,,U',,. Hence
AQ = QWR'PR ™.

Lettting

(7) H™ —WRPR ',

THEOREM 2. The matrix H™ defined above is the upper Hessenberg
matrix that can be obtained by Arnoldi’s method.

PROOF. Since Q has orthonormal columns, H (™ satisfies the Arnold-
i's relation. Now it remains to show that H{™) is upper Hessen-
berg. Since R and R’ are upper triangular, so is B! Since P =
[es,e3,... ,€m,eq], Pis upper Hessenberg and so is R PR~ Note that
W is a diagonal matrix because it is the m x m principal submatrix of
UmU'm by Lemma 2. Hence their product H(™ must be upper Hessen-
berg.
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To compute H{™), we should not form the matrix as is. Instead,
postmultiplying (7) by R and taking transpose, we get

B H™ = pTR W

since W is diagonal. After computing the righthand side, we only have
to solve the lower triangular system m times to obtain Hm"

R and R’ are the results of QR factorization. But since only the last
colums of K and K' are different, we consider the following n x (m + 1)
augmented matrix

K =[K,A™v] = [Av,A%v,... ,A™ 'v, v, A™V].

After upper-triangularization of the first m—1 columns by premultiplying
by appropriate Uy,... ,Upn_1 € R"*", let U, U’ € R(n—m+Dx(n—m+1)
be the Householder transformations that introduce zeros below the mth
position in the last two columns of the resulting matrix respectively. Let
x = (z;),x' = (z;') € R™™™*1) be the subvectors that consist of the
last 7 — m + 1 entries of the last two columns respectively. Let

o = sign(z1)|[x||2, o' = sign(z")|[x'|]2.

By premultiplying the resulting last two columns by U and U’, we get
R and R'.

Now by Lemma 1, we can write

T

U=1-cuu where u=x+oe;, c=2/||ulj3,

U'=I—cua’  where u =x'+o'e;, o =2/||u|];
Hence

UU' = (I - cun®)(I - c'u'u'")

T T
=T —cuu’ —c'v'u’” + cc’(ulu’)un’
and its (1, 1)-component is

w=(UUYy =1 - cuguy — cdu'ru'y + ec’(ulu)ugu'y



