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A GENERALIZATION OF A
LATTICE FUZZY TOPOLOGY

SEOK JONG LEE, EUN Suk PARK AND EUN Pyo LEE

ABSTRACT. In this paper we introduce a new definition of a lattice fuzzy
topology which is a generalization of Lowen’s fuzzy topology and show
that the category of Lowen’s fuzzy topological spaces is a bireflective
full subcategory of the category of lattice fuzzy topological spaces.

Introduction

As a generalization of a set, the concept of fuzzy set was introduced by
Zadeh. Chang[1] introduced a concept of fuzzy topology and Lowen[6]
introduced a more natural definition of fuzzy topology.

Some authors[2,4,8] introduced new definitions of fuzzy topology such
as smooth topology. But their definitions are generalizations of Chang’s
fuzzy topology.

We have introduced a concept of lattice fuzzy topology in [5]. In
this paper we will introduce a new definition of the lattice fuzzy topol-
ogy, which is a generalization of Lowen’s fuzzy topology. Also we will
study subspaces of lattice fuzzy topological spaccs and fuzzy continuous
maps. Moreover, we show that the category of Lowen’s fuzzy topological
spaces is a bireflective full subcategory of the category of lattice fuzzy
topological spaces.
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1. Preliminaries

Chang introduced the concept of fuzzy topology on a non-empty set
X as follows.

DEFINITION. [1] A fuzzy topology on X is a fanuly 7 of fuzzy sets in
X which satisfies the following properties:

1) 0, 1eT;

(2) fpu, veT then puAveT;

(3) If u; € T for each 7 € T', then Vier u; €7T.

The pair (X, 7) 1s called a fuzzy topological space.

Hence a fuzzy topology on X can be regarded as a map 7 : I —
{0, 1}(where I = [0,1]) which satisfies following three conditions:

(1) T(0) = (1) = 1
(2) UT(p)=T(v)=1then T(pAv)=1;
(3) I T(p;) = 1foreach i € T, then T(V;p pi) = 1.

It is easily seen that with Chang’s definition a constant function be-
tween fuzzy topological spaces is not necessarily continuous. This can
be true only if one uses the alternative Lowen’s definition.

DEFINITION. [6] A fuzzy topology on X is a family 7 C I* which
satisfies the following properties:

(1) For all « € [0,1], & € T, where & is a constant map with value
a;

(2) f u, v€ T then uAveT;

(3) If u; € 7 for each i € T, then \/,; . p; € 7.

The pair (X, 7) is called a fuzzy topological space.

Also, the above definition can be translated as a map 7 : IY —
{0,1} which satisfies corresponding three conditions. Hence it can be
generalized to a map 7 : L% — {0,1} (where L is a lattice) which
satisfies corresponding three conditions. But fuzziness in the concept of
openness of a fuzzy subset is absent in the above two definitions. So for
fuzzifying the openness of a fuzzy subset, some authors(2,8] gave new
definitions of fuzzy topology.
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DEFINITION. [2] A gradation of openness on X is a map 7 : [N — [
which satisfies the following properties:

(1) 7(0) = T(1) = 1

(2) T(pr Apa) 2T (1) AT (p2);

(3) T(Vier‘ﬂi) > /\iel‘ T (p;).

DEFINITION. [8] A smooth topologyon X isamap 7 : LY — L'(where
L and L' are copies of [0,1] and {0.1}) which satisfies the following
properties:

(1) 7(0) =7(1) = 1;

(2) T(pa Apa) 2T () AT (p2);

(3) T(\/ieF i) > /\,‘er T ().

These definitions are generalizations of Chang’s fuzzy topology. Now
we introduce a new definition of the lattice fuzzy topology which is a
generalization of all the above notions of fuzzy topology.

2. Lattice fuzzy topology

Let L be a fixed fuzzy lattice (a complete, completely distributive
lattice with an order reversing involution a — a', and with least and
greatest elements denoted by 0 and 1 respectively) and X a non-empty
set. An L-fuzzy subset of X is a function from X into L (See [3]). L¥
denotes the set of all L-fuzzy subsets of X. Let Y be a subset of X
and p € LX ; the restriction of ¢ on ¥ is denoted by p|y. For each
p € LY an extension of u on X, denoted by ux, is defined by

{ ¢ oonY,
Hx = 0 onX-Y.

Now we introduce a new definition of a lattice fuzzy topological space
as follows.

DEFINITION. A lattice fuzzy topology on X is a map 7 : LY — L
satisfying the following properties :

(1) T(a) =1 for any constant L-fuzzy set @;

(2) T(p1 A p2) 2T (1) AT (2);

(3) T(\/ier i) = /\ier T ().
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Then we call (X,7) a lattice fuzzy topological space on X.

If we choose L = [0,1], then this lattice fuzzy topology axioms inply
the fuzzy topology axioms of Chattopadhyay et al. [2] and axioms of
Ramadan[8]. If L = [0, 1] and 7 has ounly two values 0 and 1, then it is
identical to Lowen’s fuzzy topology. If we choose L = {0,1}, then it is
identical to a topology on X. That is, this new definition is an extension
of all the above definitions.

In fact, we can define a lattice fuzzy topology as amap T : LY — M
for different fuzzy lattices L and M.

DEFINITION. A famaily of closed subsets of a set X is amap F : LY —
L satisfying the following properties:

(1) F(a) =1 for any constant L-fuzzy set a,

(2) Flpa vV pe) = Flpa) A F(pe),

(3) }—(/\iel‘.ui) > /\iel‘ Flpi)-

Since L has an order reversing involution @ — o, for each u € LY
we can define p' € LY by p'(x) = (p(x)) for all x € X. We note that
i — ' is also an order reversing involution in L.

LEMMA. For any family {p;}ier of L-fuzzy sets in X the De Morgan's
Laws hold:

(1) (Apa) =V pi.
(2) (V) = Apse

Proo¥. Since A pi < gy, (A p:)' > @i by the order reversing invo-
lution. So (A ;) > V p). Similarly, from the fact \/ g; > p,, we get
(V ui)' < A\ b If we substitute pf for p,, we have (\/ p})" < A(p})', and
hence (V 1)) < Awpi. So\V pt > (A pe)'. Thus (Ap.)' =V pi. Similarly
(Vi)' < Api. Hence (V i)' = A i

By the above lemma we have following basic properties of the lattice
fuzzy topology and the family of closed subsets.

PROPOSITION 2.1. Let T be a lattice fuzzy topology on X and Fr:
LX — L a map defined by Fr(p) = T(p'"). Then Fr is a family of
closed subsets of X.
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PROROSITION 2.2. Let F be a family of closed subsets of X and
Tr : LY — L a map defined by Tr(p) = F(i'). Then Ty is a lattice
fuzzy topology on X.

PRrRoPOSITION 2.3. (1) If F is a family of closed subsets of X, then
Tr, =T.
(2) If T is a lattice fuzzy topology on X, then

Frr =F.

DEFINITION. Let (X.7) be a lattice fuzzy topological space and u €
L*. Let ¢ € L be a fixed element which is neither 0 nor 1. Then
T -closure of y, denoted by 7¢ or simply 1, is defined by

= Nne LY Fr(n) 2 ¢, n > p}.

Clearly g > n implies that @ > 7 for all u,n € LY. Also we have
Fr(E) > e.

THEOREM 2.4. Let (X, 7 ) be a lattice fuzzy topological space. Then

= [ Ve,

PROOF. (1) and (2) are obvious. For (3), it is clear that p; V pg <
A1 V7. Also Fr(fim V iz) > e since Fr(mi) > e for each 1 = 1,2.
So, by the definition of closure, p; V us < @7 V iz.  Conversely, since
i < pyVopg foreachi =1,2, 7, <p1Vus. ThusTr Vg <y Vopsg.
Hence [y V iz = pt; V fiz.  The proof of (4) is straightforward.

ProprOSITION 2.5. Let (X,7) be a lattice fuzzy topology. Then
for each p € LX,
Frp)2e<=p=10
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PROOF. It is obvious from the definition of closure.

Thus we may have many kinds of closedness in a lattice fuzzy topology
depending on level.

Let X be a non-empty set. Define 7 : LY — L by Z(a) = 1 for any
constant L-fuzzy set &, I(u) = 0 for any non-constant u € LX. Define
D:LX - Lby D(u) =1forany p € LY. Then Z and D are both
lattice fuzzy topologies on X such that for any lattice fuzzy topology T
on X,Z <7 <D. Thatis, T(pu) < T(u) < D(p) for any u € LY.

PROPOSITION 2.6. Let {7} : k € T'} be an arbitrary family of lattice
fuzzy topologies on X. Then T = /\ T} 1s also a lattice fuzzy topology

kel
on X.
PROOF. Obviously 7(u) = (Ayer 7i)(#) = Ager Ta(p) is amap from
L¥X to L.
(1) T(a) = A Ti(a) = 1 for all constant é.

(2) Let puy,puz2 € LX Then

T Apz) = N Tulpr A pa)

kel

> A {Tx(11) A Ti(2) by axiom 2)
kel

= ( /\ Tk(,ul /\ Ti( ﬂz)
kel kel

=T{p) NT(pg).
(3) Let {u:}ies be a family of L-fuzzy subsets of X. Then

TV ) = ATV 1)
| > /k\{/\ T:c(m)}(by axiom 3)
= /\{/k\ifk(u,»)}
= /\T(Hi)~
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So 7 is a lattice fuzzy topology on X.

Thus we have the greatest lower bound of any family {7 : £ € T'}.
Similarly we have the least upper bound of any family. Let Mp(X) be
the set of all lattice fuzzy topologies on X. Then we have:

THEOREM 2.7. (Mp(X), <) is a complete lattice with the least ele-
ment T and the greatest element D.

Now we will study the relations between Lowen’s fuzzy topology and
lattice fuzzy topology. From now on, a fuzzy topology means the Lowen’s
fuzzy topology generalized to a fuzzy lattice L. Let 7, = {u € LY
T(u) > a} be a a-cut of a lattice fuzzy topology 7.

PRrRoOPOSITION 2.8. Let (X,T) be a lattice fuzzy topological space.
Then for each a € L, the a-cut 7T, is a fuzzy topology on X. Morcover
T. CTyifa>b.

PROOF. (1) For any &, 7(a)=1. Soa € 7,.

(2) Let py, 9 € T,. Then T{p1) > aand T (p2) > a. So T (puy Apa) 2
T (1) NT(pp) > a. Hence py A g € 7.

(3) Let y; € T, for all i € I'. Then T(y;) > aforall7 € I So
T(V i) > AN7T(ui) > a. Hence \ p; € T,.

By the above result, Z, and D, become the indiscrete and discrete
fuzzy topology, respectively.

PRrROPOSITION 2.9. Let (X,T) be a lattice fuzzy topological space
and T, be the a-cut. Then T (pu) = \/{a|p € 7.}

Proof. V{alu € To} = V{a|T(p) 2 a} = T(p).
COROLLARY. Two lattice fuzzy topologies T and U on X are equal
if and only if T, = U, for any a € L.
PROPOSITION 2.10. Let (X,T) be a fuzzy topological space. Define
for each a € L, a map T® : L — L by the rule:
1  for any constant L-fuzzy set &,
T*u) =< a ifp €T and p is non-constant,
0 otherwise .

Then T? is a lattice fuzzy topology on X such that (T%), =T.
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PRroOOF. (1) T*(a) = 1 for any constant L-fuzzy set a.

(2) Note that T%(p )AT*(uz) = 0,a or 1. HTp )AT*(p2) =0, it is
obvious. H T*(u;) AT%(u2) = 1, then p, and f2 are constant, and hence
p1 A pg is also constant. Thus T%(uy A pg) =1 > T 1) AT ). If
T*(p1)AT*(p2) = a, then T*(p1y) > a and T%(p2) > a. Thus 1 € T and
pt2 € T, and hence s A py € T. So Ty A pa) > a = T%(pq) A T%(ps).

(3) If Aser T*(pi) = 0, then it is obvious. If Aier T%(pi) = 1, then
T*(ps) = 1 for all i € T. Thus g, is constant for all i € T'. Hence
V p; is constant. So T*(Vier i) = 1> Njep T%(pi). If Nier T%(ps) =
a, then T%(pu;) > a for all 1 € T. Thus y; € T, and hence \/ u; € T. So
TV i) 2 a=ATw). Inall TV, pi) > Ajer T 11)-

Moreover u € (T%), if and only if T%(x) > a if and only if u € T.
Hence (T%), =T.

DEFINITION. Let T be a fuzzy topology on X. Then the lattice fuzzy
topology T* on X is said to be a-th graded.

3. Fuzzy continuous maps and subspaces

DEFINITION. Let (X,7) and (Y,U) be two lattice fuzzy topological
spaces and f : X — Y a map. Then the map f is called a fuzzy contin-
wous map if for each p € LY, U(p) < T(f~(p)).

PROPOSITION 3.1. Let (X,T) and (Y,U) be two lattice fuzzy topo-
logical spaces and f : X — 'Y amap. Then the map [ is fuzzy continuous
if and only if, for all a € L, f : (X, T,) — (Y,U,) is fuzzy continuous.

Proor. Suppose f:(X,T) — (Y.U) is a fuzzy continuous map and
a € L is fixed. Take p € U,, then a < U(p) < T(f~'(u)). Hence
f™Yw) € T,. Thatis f: (X,7T,) — (Y. U,) is fuzzy continuous. Con-
versely, suppose f : (X,7,) — (Y,U,) is fuzzy continuous for all a € L.
Let p € LY. If U(p) = 0, then obviously, Ulpy < T(fFYw)). If
U(p) # 0, let U(p) = r, then u € U,. So f~'(u) € Ty, by the fuzzy
continuity of f: (X, 7;) — (Y,U,). Hence T(f~"(p)} > r = U(y). Thus
f (X, T) > (Y,U) is fuzzy continuous.
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PROPOSITION 3.2. Let (X,T) and (Y,U) be two fuzzy topological
spaces and f : X — Y a map. Then f : (X, T) — (Y,U) is fuzzy
continuous if and only if f : (X,T?%) — (Y,U*®) is fuzzy continuous for
eacha € L.

PROOF. Suppose f: (X,T) — (Y,U) is fuzzv continuous. Take u €
LY. Then either ;€ U or g U. If u € U and j1 = a for some constant
L-fuzzy set @, then f~'(a)=a&. SoU%u) =U% a)=1<1=T%a) =
T(f~Y(a)) = T*(f~"(p)). Let u € U and g # &. Then U%(p) = a.
By the fuzzy continuity of f, f~'(u) € T. So U%u) < T*(f~'(1)). In
case p ¢ U, U%(p) = 0. So U*(pu) < T*(f ' (u)). Hence f: (X,T°) —
(Y,U?) is a fuzzy continuous map, for each a € L. Conversely, suppose
f:(X,T%) — (Y,U*?) is a fuzzy continuous map. Then f: (X,(T%),) —
(Y,(U?)q) is fuzzy continuous by the above proposition. Since (T%), = T
and (U%), =U, f:(X,T) — (Y,U) is fuzzy continuous.

PROPOSITION 3.3. Let (X,7),(Y,U)and(Z,V) be three lattice fuzzy
topological spaces. If f : (X, T) — (Y,U) and g : (Y, U) — (Z,V) are
fuzzy continuous maps, then soisgo f: (X, T) - (Z,V).

PRrROOF. Straightforward.

DEFINITION. A map f : (X,7) — (Y,U) is called a fuzzy homeo-
morphism if f is bijective and f and f~! are fuzzy continuous. A map
f (X, T) = (Y,U) is said to be fuzzy open f T(u) < U(f(u)) for
all g € LX. A map f : (X,T) — (Y,U) is said to be fuzzy closed if
Fr(p) < Fu(f(w)) for all p € LX.

THEOREM 3.4. Let (X,7) and (Y,U) be two lattice fuzzy topolo-
gies and f : X — Y a bijection. Then the following statements are
equivalent.

(1) f is a fuzzy homeomorphism.

(2) f is fuzzy continuous and fuzzy open.
(3) f is fuzzy continuous and fuzzy closed.
(4) T(XN) =U(f(XN)) for all.x € LX.

(5) U(p) =T(f~H(p)) for all p € LY.

PROOF. Straightforward.
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THEOREM 3.5. Let (X,7) be a lattice fuzzy topological space and
i :Y — X an inclusion map. Define a map Ty : LY — L by

=T A e LY i (A) = u}.

Then Ty is the smallest lattice fuzzy topology on'Y such that the map
v is fuzzy continuous.

ProoF. Clearly Ty is a map from LY to L. Let & be a constant map
from Y to L with the value a. Then

Ty (&)
=\{T): xeL*,i7'()) = a}

> T(ax), where ax : X — L is a constant map with the value o

= 1.

Thus Ty (&) = 1. For any fuzzy sets p and v € LY,

Ty(pAv)
=\V{TN):xe LY i7"\ =pAv)

(
= V{T(
>\/{T(r/\ o):moe L i7Y(r)=pand i (0) = v}
> \{T(r)AT(0): 7,0 € L¥,i™'(r) = pand i "\(0) = v}
= V{7« ﬂrreﬂ,r](r):w .
\V{T(0): o€ L¥,i7 (o) = v}]

(because L is completely distributive)
=Ty (p) ATy (v).

Tho):T,o € LX i (M)A W o) =i (T Ao) = pAv)



A generalization of a lattice fuzzy topology 123

For any family {ux}ren of fuzzy sets in LY

Tr(\ w) =T xe L¥07 ') = \/ )

ke K kER
> VAT M)k e LX and i=' (M) = ue)
keR
>VANA TOw) s A€ LY and i7'(A) = i)
kel

= A [\/{T(/\k) : )\k € LX,Z‘-_I(/\k) = 'uk}]
kel

(because L is completely distributive)

= N\ T
ke K

Hence 7 is a lattice fuzzy topology on Y. For any o € LY,

Ty (i~ (o)) = \/{’T (A):deL* i7" (WM =i"Y o))
> 7 (o).

Hence ¢ : ¥ < X is continuous. Let 7* be another lattice fuzzy
topology on Y such that ¢ : (Y,7*) — (X,7) is continuous. Since
1: (Y. T*) = (X,T) is continuous, 7*(:~1())) > T()) for any A € L¥X.
Hence 7*(p) = V{T*(0): 0 = p} = V{T*G7N) : A e LY, i7'(\) =
p} 2 \VH{T(M) : X e L\ iYN\) = u} = Ty(p). Therefore Ty is the
smallest lattice fuzzy topology on Y such that ¢ is continuous.

DEFINITION. The lattice fuzzy topology 7y determined in Theorem
3.5 1s called the induced lattice fuzzy topology on Y from (X, 7) and the

pair (Y,7y) is called a subspace of the lattice fuzzy topological space
(X,7T).

ProPosITION 3.6. Let (Y,7Ty) be a subspace of (X,T) and p € LY.
Then

(1) Fry () = V{Fr(n) :n € L*,i7N(n) = p},
(2) IFzZcyYycX then Ty = (Ty)z.
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PROOF. (1) Fr(p) = Ty(p) = VAT (M) : A € L, 7' (A) = p'} =
VITA) : N e LY i (N) = p) = V{Jffr(A cAN e LY TN N) = p) =
V{Fr(n):ne L¥,i7(n) = p}.

(2) Let p € L?. Then (Ty)z(p) = V{Ty (M) : A€ LY i71(\) = u} =
V{V{T( )ine LY, i n) = A} AELY "1(A ) = u} —\/{T )€

i) = u} =Ty (p).

4. Category of lattice fuzzy topological spaces

Let FTop denote the category of all fuzzy topological spaces and
fuzzy continuous maps and L-FTop denote the category of all lattice
fuzzy topological spaces and fuzzy continuous maps, and for each a € L,
L,-FTop denote the category of a-th graded fuzzy topological spaces
and fuzzy continuous maps.

PROPOSITION 4.1.

(1) Define F : FTop — L-FTop by F(X,T)=(X.T?%) and F(f) =
f. Then F is a functor.

(2) Define G : L-FTop — FTop by G(X,T)=(X.,T7,) and G(f) =
f. Then G is a functor.

PROOF. Proposition 3.1 and Proposition 3.2.

THEOREM 4.2. For each a € L, FTop and L ,-FTop are isomorphic.

PROOF. Define F : FTop — L,-FTop by F(X,T) = (X, T°) and
F(f) = f. Define G : L,-FTop — FTop by G(X,7) = (X,7,) and
G(f) = f. Then F and G are functors.  Clearly Go F(X,T) = (X, T).
Enough to show that F o G(X,7) = (X,7T). Take (X,7) € L,-FTop,
then there exists (X T) 6 FTop such that 7 = T? So Fo G(X,T) =
F(X,T,) = To)*) = (X, ((T*)q)") = (X, T*) = (X,7T). Thus they
are 1somorphlc

THEOREM 4.3. L,-FTop is a bireflective full subcategory of L-FTop
foralla € L.
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ProoF. Clearly L,-FTop is a full subcategory of L-FTop. Let
us take a member (X,7) of L-FTop. Then (X,(7,)?%) is a member
of L,-FTop and also 1y : (X,7) — (X,(7,)%) is a fuzzy continuous
map. Let (Y,U) be a member of L,-FTop and f : (X.7) — (Y,U)
be a fuzzy continuous map. To complete the proof we need to check
that f : (X,(7,)%) — (Y,U) is a fuzzy continuous map. Note that for
pwe LY, Up)=1oraor 0. IfU(p) =1, then j is constant and hence
f~1(u) is also constant. Thus (7,)*(f~Yp)) = 1> U(x). BU(p) =0,
then U() < (Ta)*(f~" (). If U(p) = a, then 1 = U(p) < T(f~' (1))
from that f : (X,7) — (Y,U) is a fuzzy continuous map. Thus a <
T(f~Y(u)). Hence f~1(pu) € T,, and hence (T)*(f~Yu)) > a = U(p).
Thus f: (X,(7,)%) — (Y,U) is a fuzzy continuoas map.

Therefore we have following result from the above two theorcms.

THEOREM 4.4. FTop is a bireflective full subcategory of L-FTop.
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