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2-TYPE SURFACES WITH 1-TYPE GAUSS MAP

Kyung-Ok JANG AND YOUNG Ho Kim*

ABSTRACT. It is well-known that a null 2-type surface in 3-dimensional
Euclidean space E? is an open portion of circular cylinder. In this article
we prove that a surface with 2-type and 1-type Gauss map in E? is in
fact of null 2-type and thus it i1s an open portion of circular cylinder.

1. Introduction

The study of submanifolds of finite type began in the late seventies
through the B.- Y. Chen’s attempts to find the best possible estimate
of the total mean curvature of compact submanifolds of Euclidean space
and to find a notion of degree for submanifolds of Euclidean space.

Since then many works were done to characterize or classify submani-
folds in terms of finite type. However, the class of submanifolds of finite
type is very large. Furthermore, there are still many unknown classes of
finite type submanifolds of Euclidean space or pseudo-Euclidean space.
One of such classes is the finite type surfaces in Euclidean 3-space.

On the other hand, the study of finite type submanifolds provides a
natural way to combine spectral theory with the geometry of subman-
ifolds and also with the geometry of smooth maps, in particlar, Gauss
map.

In this article, we give a partial solution for that matter, that is, we
prove that 2-type surfaces with 1-type Gauss map in Euclidean 3-space
is circular cylinders.
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2. 2-type surfaces with 1-type Gauss map

Let M be a 2-type surface of E* with 1-type Gauss map. We denote
by h, A, H,V and D the second fundamental form, the shape operator,
the mean curvature vector, the Riemannian connection and the normal
connection of M which are induced from the geometric structure in E3.
Let V be the Levi-Civita connection of E3 compatible with the natural
inner product <,> . Let G be the Gauss map of M into G(2,3) which
is the Grassmannian manifold of the oriented 2-planes in E®. Also,
G(2,3) can be identified with the decomposable 2-vectors of norm 1 in
3-dimensional Euclidean space A2E? 2 E3. Let {e}, €2,e3} be a moving
frame over M such that ¢; and ey are principle directions of M and ej
1s the unit normal vector field to M satisfying H = aej, where a is the
mean curvature of M, that is, o = 1%& and Ae; = pe; (1 = 1,2).
Then, G:M — G(2,3) can be given by G(p) = (e1 A e2)(p), p € M.
Since M has 1-type Gauss map, there exist a constant A and a constant
vector a such that

(1) AG — A(G —a) =0,

where A is the Laplace operator on M. As is well-known, the Beltrami
equation for the Laplacian is given by

(2) Az = -2H.

Suppose that a surface M is of nonnull 2-type in E*. Then the position
vector field z of M has the spectral decomposition :z = 2o + 7, + 7,
for a constant vector field zo and non-constant vector fields zp and x4
satisfying Az, = Az, and Az, = Az, for some constants A, and A,.
Then, the Beltrami equation (2) implies

(3) —2H = \pzp + Mgy,
We now put

(4) Tp = fre1 + faea + fzez and x4 = gre; + goea + gaes
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for some smooth functions f4 and ga (A = 1,2,3). The last two
equations together with the equation (3) yield

(5) MpfitAgi=0 (1=1,2) and —2a=2X,f3+A,9;

Since M is of 2-type, it is well known that there exist constants b and ¢
satisfying

(6) AH +bH +c(x —z9) =0,

where b = A, + X; and ¢ = 2 224 (For d(tall see | 4]). Let w!,w?,w? be
the dual 1- forms to €1, e, and e; and wA the connection forms associated
2 W3 satisfying wﬁ +wh=0(4,B=1,2,3) and

with w!, w

(7) e'ej Zw ei)er + hjies. Veej = wa(e,-)ek,
k
(8) <7el-63 = Zw;‘:(ci)cka
k
(9) 1 = wi(er) = hii, 2 = wj(ez) = hag, hyy = hyy = 0.

From now on, the indices A, B and C run over the range {1,2,3}
and ¢, j over {1,2} unless stated otherwise. We now prove the following
lemma for later use.

LEMMA. Let M be a surface in E*. Then, we have
(10) eipty = (i — pywlle;) (i # 7).

PRrROOF. Differentiating Ae; = p;e; covariantly with respect to e;, we
get

(Ve; A)ei = (ejpides +Z — pk)w; (CJ)Ck
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Making use of the Codazzi equation, we obtain

el emles = Sl = e
- Z(M] pe)wy(eder,

which implies _
eipy = (pi — py)wile;) (2 # 7).

This completes the proof of lemma. ||||

If we compute the Laplacian of H and take account of Lemma, we
have

2
AH =(Aa+a || h|[P)es+ > {2eia)piei+aleipiei+a ) _(e;ni)e;),
i=1 i

where || & ||?= u? + p2. Substituting the last equation into (6), we may

have
(1) At (I b I +b)a + e fs + g5) = 0,
(12) (eia)(pi + @) +c(fi+ 9i) = 0.

Using (5), (11) and (12), we get
20a + 2( R ||* +b = X)a + A (A; — Ap) f3 =0,

2080+ 2| B | 45— Ag)a + Ag(Xp — Aglgs =0,
(eia)(pi + ) + Ap(Ag = Xp) fi = 0,
(eia)(pi + ) + Ag(Ap = Ag)gs = 0.

Then, these four equations give

TS 20 7 R 7 (IR 2}

m n
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2 , 2
(14) f3:_2Aa+2(HhH —+—/\q)a, g3:~2Aa+2(”h” +)‘q,)0"

m n

where m = A,(A; — ;) and n = A (), — \,). Since V,,z = ¢, the
equations (4), (7) and (9) imply

(15) er(fi+91) + (f2 + g2)wy(er) — i (fa + 93) = 1,
(16) e2(f1 + g1) + (f2 + g2)wy(ez) = 0,

(17) (fr + g1 )wier) + e1(fa + g2) = 0,

(18) (fi + g1 )wile2) + ea(fo+ 92) — pa(fs + 93) = 1,
(19) pi(fi+91) +ei(fs +g3) = C.

Since M has 1-type Gauss map, (1) implies
(eapt1 +eapa)er Aes + (erpr + erpn)es Aeg — (3 -+ s — Ney Aey = Aa.

Taking the covariant differentiation of the equation above with respect
to e; and using (9), we have

(20) crep(pr + pz) + e1(p + po)wiler) =0,
(21) e2(p1 + pa)wi(er) — erey(py + pa) + (|| R |2 =) =0,

(22) prer(pr +po) + ey || R |*= 0.

Similarly, if we take the covariant differentiation with respect to e,, we
get

(23) ezea(py + p2) + er(pr + po)wi(ez) — pal[| 2 12 =A) = 0,
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(24) e2(p1 + p2)wilez) — ezer(p + p2) = 0,

(25) paea(py + p2) +eo || R |*= 0.

Taking account of Lemma, we obtain from (22) and (25)

(26) Bprerpn + (1 +2p2)erpr =0, (2p1 + p2)espin + 3pzeqpy = 0.

Using the structure equation : dw? = E]‘ wfv A w? , we have
(27) ety = (g — p1Jwy(er),
(28) 1z = (1 — pa)wi(ea),

since w} = piw,wd = pyw? and dw' = Z,‘ Wl A w]’
We now consider a subset My = {p € M | ui(p) # 0,pu2(p) #
0, u1(p) # p2(p)}. Suppose My # ¢. On My, (25) - (28) imply

1+ 2p2) (1 — po)
) g

(29) €11 =

_ (2 4 200 ) (11 — ﬂQ)wé(ci).

(30) €afia 3

If we substitute (27) and (30) into (20) and make use of (28) and (29),
a direct computation implies

3u+5 + Tu? )
(31) er(wh(ey) = LT ORI T T2 1 Jwd(ey).
3pipa

Putting (27) and (30) into (23), we obtain

(32)

2u +3 + Ty’ \
cafwh(en)) = = P (wilen))? + TR i)
2

3#% 2 2
S o NG Ny
2(/11 _ N2)2( K1 /1’2)
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Similarly, (21) and (27) - (30) produce

(33)
" T2 4 3pype + 2u3 ,
er(wie)) = — P (wh(en)? + LTI T A (2,2
1o 344
3#% 2 2
SR ol E—D S —_— )
2(,“11 _ #2)2( Hq Iu?)

On the other hand, (24) together with (27) - (30) yields

Tpf + Spypg + 3ng1

(34) e2(wi(eg)) = 31 3 (71 )wi(e2).

Substituting (13) into (17) and making use of (27) - (31), we have
after a long computation

Ay — o)t 1 1.
ALY e e+ ) =0,
i pro A

It follows that
wy(eq)wiley) =0

on My. Let M, be the subset of M defined by {p € M, | w?(ez) # 0}.
Suppose M; # ¢. Then wi(e;) = 0 on My. Thus, ezu; = eapg = 0 on
the open set M;. On M;, (21) and (22) become

(35) erer(p 4 o) = p(pi +ps — A),

(36) pren(pn + p2) + er(p? + pd) = 0.

Since 0 = ea(wj(e1)), it follows that

1 2 BHaifh 2 2
(37) (wy(e2))” = N1y — i) (uy 4+ ps5 = A)
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on M,. Differentiating (35) covariantly with respect to e; and making
use of (23) with exp; = oy = 0, (33), (35) and (37), we get

Hol 1 + 2p2) 2

S (i — /i2)(/\ 21"} 2p1 + p2) (21 — 1) = 0.
It follows that (p; + 2p2)(2p1 + p2) = 0 on M,. Let My = {p € M, |
(2uy +p2)(p) # 0}, If My # ¢, then uy +2u; = 0 on M,. Differentiating
this covariantly with respect to e; and using (28) and (29), we get pu; =
2, which is a contradiction. Hence M3 must be empty and 2p; + g2 = 0
on M,;. If we take the covariant differentiation of 2uy + uo = 0 in the
direction of ey, then we can get py = 0 and pu; = 0 on M,. It contradicts
the poperty of u; and gy on My. Therefore, the subset M, is empty,
that is, w#(e;) = 0 on M. By developing the same argument as we did
before, we get w?(e;) = 0 on My. Thus, u; and p, are constant on each
component of My and we can prove that u; and ps are globally constant
by the same argument in the proof of Theorem 3.2 in [5]. Consequently,
the possible cases are that M is an open portion of planes, spheres and
circular cylinders in E®. Since M is of nonnull 2-type, it is impossible.
Hence, M must be of null 2-type. In the sequel, 2-type surfaces of E3
with 1-type Gauss map are null 2-type. Thus, we have

THEOREM A. Circular cylinders are the only connected 2-type sur-
faces with 1-type Gauss map in E3.

References

1. Baikoussis, C., Chen, B. -Y. and Verstraelen, L., Ruled surfaces and tubes with
finite type Gauss map, Tokyo J. Math. 16 (1993), 341-350.

2. Chen, B. -Y., Geometry of submanifolds, Marcel Dekker, New York, 1973.

, Total mean curvature and submanifolds of finite type, World Scientific
Pub., 1984.

4. Chen, B. -Y., and Piccini, P., Submanifolds with finite type Gauss map, Bull.
Austral. Math. Soc. 35 (1987), 161-186.

5. Kim, Y. H., Co - closed surfaces of 1-type Gauss map, Bull. Korean Math. Soc.
31 (1994), 125-132.

Department of Mathematics
Teachers College

Kyungpook National University
Taegu 702-701, Korea



