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CONFORMAL COMPACTIFICATION
OF ASYMPTOTICALLY EUCLIDEAN
SCALAR-FLAT KAHLER SURFACES

JoNGgsu Kim

ABSTRACT. We show that an asymptotically Euclidean scalar-flat
Kahler metric on a complex surface can be smoothly conformally
compactified at the infinity point. We discuss some implication of
this, characterizing such metrics on C? blown up at some points.

1. Introduction

In this paper we study asymptotically Fuclidean Kdhler surfaces of
zero scalar curvature. In [10], C. LeBrun observed that a complex
surface which admits such a metric is biholomorphic to C? blown up
at a finite number of points (see also P. Li and S. T. Yau [14] ) and
constructed ones on C? blown up at a finite number of distinct points.
Though this marks a significant step toward the classification, a few
important questions remain unanswered in the way.

The first question is whether one can construct such a metric on C2
blown up at a finite number of any points, not just distinct points.

The second question is on the uniqueness; Is such a metric on a
blown-up C? unique in a natural sense? The analogous question in
compact Kahler manifolds of constant scalar curvature is an interesting
nontrivial problem and settled only for Kdhler Einstein metrics, see
[5]. Affirmative answers to both questions will lead to the complete
classification of asymptotically Euclidean Kahler surfaces of zero scalar
curvature.
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The first question is rather successfully resolved by the author in (7].
To attack the second uniqueness problem, we need a sufficiently good
geometric characterization of those metrics. The main point of this
paper is to prove a characteristic property of such a metric, namely that
an asymptotically Euclidean scalar-flat Kahler metric on a complex
surface can be conformally compactified with the infinity point. This
type of compactification may well have been studied through some
standard theory but we have not found a general theorem with rigorous
proof. So we choose an elliptic regularity approach to this as in M.
Anderson [1]. We will discuss some implication of this compactification
property in section 4, giving an answer to the second question in some
special cases.

In section 2, we explain some definitions and exhibit examples of
asymptotically Euclidean scalar-flat Kahler surfaces.

In section 3, we prove the conformal compactification. In fact, first
we show that the Kahler metric when multiplied by a suitable confor-
mal factor function can be extended upto the infinity point in such a
way that it becomes a weak solution of a system of elliptic diferential
equations on the one-point compactified manifold. Then by some ellitic
regularity argument we show that the conformally compactified metric
is a smooth solution of the system.

In section 4, we make remarks on applications of the compactifica-
tion property.

2. Preliminaries

2.1 Blowing up

We begin with explaining the blowing up construction. It is a holo-
morphic surgery. Let M be a complex surface and p a point on it. We
choose holomorphic coordinates near p so that we may assume M = C?
and p = (0,0). We set § = CP', the complex projective line.

Now we define a complex structure on M = (M — {p})Up as a com-
plex submanifold of C? x CP' as follows. Let (z; z2) be the standard
coordinates on C? and [(1, (2] the homogeneous coordinates on CP!
1.e. {Cl, Cg] = (Cl; CZ)/{(Cla Cg) ~ /\(Cl,C‘g), AeC—- {O}} Then M is the
analytic subset of C? x CP' defined by ¢;zy = Cozy.

Let 7 be the restriction to M of the projection (z, (1) — z of C2 x
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CP' onto C2. Then 7 is a holomorphic map of M onto M = C?, and
~1((0,0)) = {(0,0)} x CP'. Further 7 is a biholomorphic map of
M —{(0,0)} x CP! to M — {p}.

Therefore we defined a complex structure on M = (M — {p}) U p.
Topologically M is obtained from M by replacing a point p by 2-
dimensional sphere § = §?, called the exceptional curve of the blowing
up. Some argument shows that the normal complex line bundle to

$ = S? has Euler number —1. Therefore M is diffeomorphic to M ﬁ(C]P
the connected sum of M and a complex projective plane with reversed
orientation.

The blowing up can be done at a point of an exceptional curve of
previous blowing-ups. In this case we simply say that we blow up (more
than once) at the same point. This is subtle but important as the first
question in the introduction exactly points out the issue.

2.2 Aymptotically Locally Euclidean Metric

We define a Riemannian metric g on a noncompact manifold M to be
aymptotically locally Fuclidean if M has just one end and if there exists
a compact subset K in M such that a finite covering VofM-—Kis
diffeomorphic to the complement of the unit ball in R*%: the pulled-back
Riemannian metric g;; on V is required to approximate asymptotically
the Euclidean metric d;; on R*, so that in the natural coordinates z;,
one has

(2.1) ij = 0ij + aij

with 8Pa;; = O(r=27P), p = 0,1,2 where 72 = Y z? and 8 denotes
differentiation with respect to the coordinates ;.

We call g asymptotically Euclidean if we can take M — K as the
covering V in the above.

2.3 Examples

Now we describe some known examples of asymptotically Euclidean
scalar-flat Kahler surfaces. Let r € (1,00) and 01,02,03 be a left
invariant coframe for S3. Then the following metric on (1, 00) x S3

dr? 1.
(2.2) g = ——1+r2(of+ag+(1——ﬁ}ag).
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can be compactified with S2 corresponding to r = 1. The normal
bundle of this S? has Euler number —1. So the compactified manifold
is diffeomorphic to C? blown up at one point as described in subsection
2.1. It is clear that g is aymptotically Euclidear..

Next, there are metrics found by LeBrun [11], which can be viewed
as superpositions of (2.2) metrics, on a blow-up of C2 at a finite number
of distinct points along a complex line in C?; it is of the form

(2.3) 9= f}Vh~V"1u?

where £ is a hyperbolic metric, A,V = 0 and dw — *pdV with %), being
the Hodge-star operator with respect to A. In 110}, LeBrun perturbed
these metrics to ones on blow-ups of C? at a finite nunber of any
distinct points.

These so far are essentially all the known asymptotically Euclidean
examples,

There are some more locally asymptotically Euclidean examples;
There are ricci-flat multi-Eguchi Hanson metrics, see 6. Related to
these, Kronheimer [9] did a gencral construction and classification of
locally asmptotically Euclidean ricci-flat Kihler surfaces.

There are other locally asmptotically Euclidean scalar-flat Kihler
metrics [12] which have explicit expressions in verms of local coordi-
nates. They are on the total spaces of some complex line bundles over
5? and generalize (2.2) metric; For r and 04,04, 04 be as above,

, dr® 20 2 2 l 2
(2.4) g= err (of + sz(1+;§+;1)03)~

]
2

Here A=n—-2and B=1-n,n = 1,2,3,.. and the first chern
class of the bundle corresponds to —n.

3. Compactification

Now suppose that ¢ is an asymptotically Euclidean scalar flat Kihler
metric on a noncompact complex surface M. We use the notation of
subsection 2.2. Let h = (;%29 where ¢ is positive, stnooth and equal to r2
outside some compact subset of M. The following lemma is particularly
well known in compact case as (3.1) is the Euler-Lagrange equation for
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the Riemannian functional W(g) = [ |W9|2dvolg where W, is the Weyl
curvature tensor and an anti-self-dual metric, meaning the positive
part of the Weyl curvature tensor being zero, gives a minimum value
of W(g). We denote the ricci curvature by ric and the scalar curvature
by s.

LEMMA 3.1. The metric h is anti-self-dual and satisfies the following
systemn of partial differential equations, called the Bach equation.

1 -
(3.1) §PdP (ric — ésh} =2Wric, on M.

Here dP is the differential operator on symmetric 2-tensors ¢ acting
by dPy(z,y, 2) = Dato(y, 2) — Dy (z, 2), and 8P is the dual operator of
dP. For a curvature tensor A (such as the Riemannian curvature tensor
R and the Weyl tensor W), A is the linear map on symmetric 2-tensors
such that (Ay)(z,y) = S v(A(z,e)y,e;) for an orthonormal basis
€1,€2,..,€p.

REMARK 3.1. The Bach equation is the Euler-Lagrange equation
of the functional W(g) on a compact 4-dimensional manifold. This
equation is conformally invariant, i.e. if g satisfies the Bach equation
then f? - g also does, for any positive function f.

REMARK 3.2. The anti-self-duality of a metric is also a conformally
invariant condition. We call a Riemannian metric self-dual if W™ =
0. Under orientation change an anti-self-dual (self-dual resp.) metric
becomes self-dual (anti-self-dual resp.) but the Weyl tensor W = W'+
W™ is invariant.

Proof of Lemma 8.1. A scalar-flat Kéhler metric is anti-self-dual
(13, p.274]. As h is conformal to a scalar-flat Kéhler metric, & is anti-
self-dual by Remark 3.2.

The Bach equation can be written in terms of spinor notation as
follows [16, p127], [8]

Bay = 2(VG VB + 25/5) ABCD:
which can be translated to

. 1. 1 1.
By, = VVIW, 4 — 5(Wm'c)a,, = ——2—(6[)D*W)ab - §(Wric)ab.
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This is equivalent to (3.1) by Diffential Bianchi identity.
From above the Bach equation clearly holds for metrics with W~ —

0, i.e. self-dual metrics. But as (3.1) is independent of orientation, it
holds for the anti-self-dual metric A too. O

We have a formula [4, (4.71)]
(3.2) §°dPric = 2D Dric — 2Rric + 2ric o ric + Dds,
and
(3.3) 6PdP (sh) = (As)h,

where (ricoric);; = Y ricFrick; in local coordinates. From (3.1)-(3.3)
we get

Y g 1 1
(3.4) D*Dric = Wric+ Rric — ricoric — 5 Dds + EAsh,

Now we have

DD*(sh) = —Dds
(3.5) D*D(sh) = (As)h

DD*(ric; = ——;—Dds
From these we have
. 6 1 v, ) . 5
(3.6) (D™D — —5-DD Y(ric — 1—2»sh) = Wric — ricoric + Rric.

Now substituting the variables by y;, = T;/r?, i = 1,..,4, we can
view the above equation as defined on an origin-deleted ball in R

LEMMA 3.2. The metric h can be extended upto the origin as a
L*> weak solution of (3.6).
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Proof. As h is a smooth solution away from the origin, we only
need to consider h near the origin. Then h = T%(dmi ® dx; + a) with

OPa € O(r~27P) ,p=0,1,2. Just compute %,(d:ri ® dz;) = dy; ® dy;.
Setting p? = ) yZ = %, we compute that 8—11;@;) is O(p%) and

(—9276—?}7(;‘%) is O(p*). We then have in y; coordinates
hij = 8i; + O(p°)
0
—hy; = O(p°
(3.7) dy* J (0”)

B_y"b?hw = O(p")

Now h is at least twice differentiable near the origin of y; coordinates
from the first two equations and the second derivative of A is bounded
(indeed differentiable) from the third equation. So A is in L%°.

Next, it is easy to show that (3.6) holds weakly with h; just apply
integration on both sides after multiplying by functions n € C%° and

see that both sides are equal with h € L?%. Therefore h is a weak
solution. ]

Now the basic line of arguments follows that in [1, section 4]. We
set u = ric — {5sh. Now u is a weak L solution to the system (3.6)
when it is viewed as a second order differential system in u.

Set Ry = Wric — rico ric + Rric, which is quadratic in curvature
tensors. We then write (3.6) simply

(3.8) Liu = Ry, with Ry € L*.

The system (3.8) is elliptic second order; we compute the symbol of
L, acting on symmetric 2 tensors S?(M) Cc TM @ TM. For £ € TM

. 6 - 6
0g(D"D = 2 DD")(n©w) = (< §€> 1~ s <&n>Eou
This implies that L, is ellptic.
For a Riemannian metric with L?*° bound, there exists harmonic co-
ordinates in which h;; are bounded in L>* [2]. So from now on we use
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harmonic coordinates of h on a ball centered at the origin. For conve-
nience we denote these harmonic coordintes again by y;, i = 1, 2,3,4.
Then the operator takes the form

(Liu)ys = K9 0:05uys + ga,.as(habuab) + QL (h,8h)
3 3
(3.9) = h" 8,0,u + Z(c’)rﬁshab)uab + anrh“b)(asuab)

3 ‘
+ Z(asfz‘w)(&.%l_) + ghabarasuas, + QL (h, Oh).

In the first equality we used (3.5) and QL (h,8h) is a term quadratic
in h and 0h and so belongs to L™,

As (0,05h%®)ugy is in L, setting
(3.10)

Lou = h¥8;0;u + 3(8 R%®)(Bsuugp) —<a R (Bu) + %h“barasuab,
we have
(3.11) Lou=f

with f = Ry — %(arash“b)uab — QL. (h,0h) € L.

As the coefficients of Ly are in C* for any « < 1, w is in L?P for
any p < oo by standard L? elliptic regularity [15, section 6.2] . Taking
trace of u, we see that ric is in L??, for any p < oo.

Now we use the ricei curvature equation in harmonic coordinates

th,b

12
(3.12) 8m ox;

- + Qrs(h, Oh) = ric,,

where () is a term quadratic in h and its first derivatives, of the general
form h2(0h)?, which is in L1*°. We see that h is in WY, for any p <
oo. We return to the system (3.8)-(3.12) and repeat the argument.
Then we can finally show that h is in W/ for any k,p > 2, and so h is
in U,

So we have:
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THEOREM 3.3. Let g be an asymptotically Euclidean scalar flat
Kéahler metric on a noncompact complex surface M. Then g can be
conformally smoothly compactified, i.e. there exists a positive function
f on M such that f% g is a smooth Riemannian metric on M U {oc}.

REMARK 3.3. If we had assumed the asymptotic Euclidean condi-
tion as having the appropriate decay of all derivatives of the metric for
p=10,1,2,3,.. in (2.1), then we could get h with better regularity in
Lemma 3.2. Then we proceed through (3.8)-(3.12) similarly as above.

4. Application and concluding remarks

In this section we make some remarks on an application of theorem
3.3.

To prove this application one needs to discuss some complex 3-
dimensional geometry, so called twistor theory, which has much dif-
ferent flavour from that of section 3. We’d have to avoid some part
of details, but we do a complete line of arguments giving necessary
references.

The twistor space Z of an oriented 4-dimensiorial Riemannian man-
ifold (N4, h, orientation) is the S?_bundle of pointwise almost complex
structures on /N which are compatible with both } and the orientation;
the fiber over each point p of N consists of the orientation preserving
almost complex structures J : T, N — T,N i.e. J? = —Id such that
hJX,JY)=h(X,Y) for any X,Y € T,N. So this fiber can be iden-
tified with the quotient space SO(4)/U(2) = §2. In [3] it is explained
that Z itself admits a natural alinost complex structure which makes
it into a complex 3-manifold exactly when A is aati-self-dual. By def-
inition this twistor space Z only depends on the conformal structure
(h] of the metric h.

Consider t : Z — M the bundle projection and then by definition a
hermitian structure J on M is exactly a section of ¢ whose image we
denote by D, while another hermitian structure --J is another section
whose image is D.

An important point of the twistor theory is that the twistor space Z
of an anti-self-dual metric h completely determines the conformal class
[h] and that in the hermitian anti-self-dual case the pair (Z,D) or
triple (Z, D, D) completely determines the conformal class [R] as well
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as the complex structure J. The proof of Theoreni 4.1 below involves
a detailed analysis of Z using this point.

So we return to the compactified manifold M = M U {oc} of section
3. We denote the conformally compactified metric on A by h as before.
The conformal class [g] is equal to [h] restricted to M. So the twistor
space Zpr of (M, g) is an open submanifold of the twistor space Z wr of
(M,h). Zy and Zy; are complex 3-manifolds by Lemma 3.1.

By above description, the twistor space Zys has two disjoint divisors
D and D as (M, g) is assumed hermitian. Consider the closures of D
and D in Zy;, denoted by cl(D) and cl(D) respectively, which are
complex codimension 1 hypersurfaces.

Now we show

THEOREM 4.1.

(1) Any aymptotically Euclidean scalar-flat Kihler metric on C?
blown up at 1 point is the Burns metric (2.2).

(2) Any aymptotically Euclidean scalar-flat Kahler metric on C2
blown up at any 2 points is one of LeBrun’s metrics (2.3).

Sketch of Proof. The complex hypersurfaces cl(D) and c/(D) in Z A
are called elemenatry effective divisors. The existence of these implies
(17, (3.3) and (4.3)] that the conformal class [h] is of positive type; in

the notation therein, cl(D) + cl(D) is equivalent to KE% = 0z(2) as
a divisor.

The rest of argument follows by applying Poon’s theorems; for (1), use
Corollary 2.8 in [18] and for (2), use theorem 5.5 in the same paper.(]

REMARK 4.1. Proving uniqueness of scalar-flat Kihler metrics on
compact complex surfaces is easy in some cases if there exists a nontriv-
ial holomorphic vector field; one argues by Matsushima-Lichnerowicz
Theorem 5’ that the vector field gives rise to a family of isometries
which help to identify the scalar-flat metric. Here in noncompact case
an obstacle is that even if the blowing up points are collinear, i.e.
blowing-up points are along a line in C?, so that there is a nontriv-
ial holomorphic vector field, we can not immediately say that it gives
isometries.

When the points blown up in C? are generically distributed so that the
surface admits no nontrivial holomorphic vector field, the compacti-
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fication property still gives a good deal of informations necessary to
answer our uniqueness question.

Some more applications along this line and coastructions alluded in
section 1 will appear in [7].
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