QUADRATURE FORMULAS FOR WAVELET COEFFICIENTS

  • Kwon, Soon-Geol (Department of Mathematics Pohang University of Science and Technology )
  • Published : 1997.11.01

Abstract

We derive quadrature formulas for approximating wavelet coefficients for smooth functions from equally spaced point values with arbitrarily high degree of accuracy. Wa also estimate the error of quadrature formulas.

Keywords

References

  1. An Introduction to Numerical Analysis (Second edition) K. E. Atkinson
  2. Comm. Pure Appl. Math. v.44 Fast Wavelet Transforms and Numerical Algorithms I G. Beylkin;R. Coifman;V. Rokhlin
  3. Comm. Pure Appl. Math v.41 Othonormal Bases of Compactly Supported Wavelets I. Daubechies
  4. CBMS-NSF Regional Conference Series in Applied Mathematics v.61 Ten Lectures on Wavelets I. Dauvechies
  5. Proceedings of the ISCAS '92 On the Moments of the Scaling Function R. A. Gopinath;C. S. Burrus
  6. Applied and Computational Harmonic Analysis v.4 High Accuracy Reconstruction from Wavelet Coefficients F. Keinert;S. G. Kwon
  7. Preprint High Accuracy Multiplication of Functions in the Wavelet Basis S.G. Kwon
  8. SIAM J. Numer. Anal. v.31 Quadrature Formulae and Asymptotic Error Expansions for Wavelet Approximations of Smooth Functions W. Sweldens;R. Piessens