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ON THE CERTAIN PRIMITIVE ORDERS
SUNGTAE JUN

ABSTRACT. There are several kinds of orders in a cuaternion alge-
bra. In this article, the relation hetween the orders is studied.

1. Introduction

It is well known that there is a close connection between primitive
orders in a quaternion algebra and modular forms of weight 2 on T’ o N).
A primitive order in a quaternion algebra over a number field K is an
order which contains the ring of integers in a quadratic extension field
of K.

There are two types of quaternion algebra over a local field k, a
division algebra and a 2 x 2 matrix algebra. In quaternion algebras
over a local field, primitive orders can be classified into three kinds of
types. That is, a primitive order in a quternion division algebra which
contains the ring of integers of a quadratic extension field of k. In a
2 x 2 matrix algebra, there are two types of primitive orders. One is
an order which contains O x O where O is the ring of integers in k and
the other is an order in a 2 x 2 matrix algebra which contains the ring
of integers of a quadratic extension field of k.

Primitive orders in 2 x 2 matrix algebra which contains @ x ¢ where
O is the ring of integers were studied by Hijikata [4]. Primitive orders in
a division algebra, so called, “special orders” were studied by Hijikata,
Pizer and Shemanske [5]. They constructed Brandt matrices associated
with the arithmetic theories of these orders. Using optimal embedding
theory of special orders, they finally solved basis problem with Brandt
matrices [6].
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The remaining type of primitive orders was studied by Brezinski and
he found the formula of the number of equivalence classes of optimal
embeddings in primitive orders [1]. However, with the results of [1],
there are some technical problems to construct Brandt matrices asso-
ciated with the remaining type of orders. These Brandt matrices will
play a central role in the study of certain theta series [8].

In this paper we investigate the arithmetic theory of primitive orders
in a 2 x 2 matrix algebra containing the ring of integers of a quadratic
extension field of k¥ and tabulate the number of equivalence classes of
optimal embeddings concretely. This arithmetic theory and table will
enable us to study Brandt matrices associated with these orders and a
certain space of modular forms of weight 2 on I'¢(N) (See [8]).

2. Orders in quaternion algebra

2.1 Let B be a quaternion algebra which is split over a nondyadic
local field k£ and let L be a quadratic extension field of k contained in B.
Then there exists an element £ in B* such that B == L+£L and € = £Z
for all z € L (See [9] p54). To see this clearly, we can identify B with

{(g &> |, B € L} and L with {(g g) e € L}, where — is the

conjugation of L over k. Then € is identified with (1) (1) . Hence the
norm and the trace of an element in B are defined as the determinant
and the trace of corresponding element in g ii) la, B € L}. Also,

N({&) = —1 implies that € = —¢. Further, for an arbitrary = € L,
=2t = -La.

Let O (O) be the ring of integers in L(k), P,(P) the prime ideal of
Or(0). Let 7y, (7) be the prime element of Pr(P).

2.2 If o is integral of degree 2 over O satisfying o — sa+n = 0. We
denote the discriminant of & by A{a) = 52 —4n. If " is an O algebra of
rank 2, T = O + O« for some a and A(T') = A(a)U? where U = O*.

DEFINITION 2.1. t = t(L) = ordx(A(L)) — 1.

2.3 Thus it is easy to see if z ¢ O, then ord; (z) > ordx(A(L)) =
t+1.
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REMARK. Note that if L is an unramified extension field of k, then
t = —1. On the other hand, if L is a ramified extension field of
nondyadic field, k, then ¢ = 0 (See 1.3 in [5] ).

PROPOSITION 2.2. Let the notation be as above. Let R be an order
of B and L a quadratic extension field in B. Then R contains O, if
and only if

O + &Py if I is an unramified extension field, or
R=< O+ 1+ f)Pf"l if L is a ramified extension field, or
Op+(1-¢pP! if 7, is a ramified extension field

for some nonnegative integers n.

Proof. Suppose that R is an order which contains ;. Then R =
Oy, + yOy, for some u,y € R. Since 1 € R, lex u = 1 without loss
of generality. Now, y € R C B = L+ &L, let v = o + £ for some
a,Beland 8#0. lfx € O, then zy = z(a + £8) = (2 — Z)a + y7.
So (z — Z)a =xy — yT € R for any = € Oy, Since ordp(z —Z) >t+1
by 1.3, a € P, 'L,

If a € OL, then 8 e Oy since N(y) = N(a) — N(B) € O. Let
n=ord; 8. Then R = O, + €80, = O + EP.

Ifad (’)1 , then this is the case that L is ramified and o € P* -0y
Let o = m, "% and 8 = 7, La where 7, is the prime element of Py
From N(y) = N(a) - N(8) € O, it is easy to see N (u/w) =1 mod P.
That is, u/w = +1 mod P;. Thus R is either O}, + (1 + &P or
OL+(1-¢&P, 1

The other direction of the proof is trivial. C

2.4 Let n(m,) be a prime element in the ring of integers in k (L
respectively). Then if I is ramified, 7 = 72 1nod Of and if L is
unramified, 7 = n;, mod O}. We now need new notations of orders
for the next step.

DEFINITION 2.3. Let L be a qnadratic extension field of k and O
its ring of integers. Then

(1) if L is unramified,

Ron (L) = O +&n7 0, forn > 0,
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(2) if L is ramified,

R.(L) =0 +¢&ry 'O forn>1, or
Ro(L) =0p + (1 + &7, 'O,  or
Ro(L) =0, + (1 - )71 Oy

LEMMA 2.4. Let the notations be as above. Then
(1) if L is unramified,

-+ C Rpn(L) C Rop—o(L) -+ C Ro(L).

(2) if L is ramified,

...CRn(L)CRn_l(L)~~CR1(L)C{

Proof. This is immediate from definition 2.3.

LEMMA 2.5. Let L be a quadratic ramified extension field of k.
0o O a [
Thean(L)_(P (’))_{<7 5>|a,ﬁ,5€(9and7€P}.

Proof. If an order R is either maximal or there exists a uniquely
determined pair of orders {R’, R”} such that R = R’ N R”, then R is

B* conjugate to < 1(39" g) for some nonnegative integer v (See 2.2

[4]). Since Ri(L) = Ro(L) N Ro(L) and Ry(L) is the second largest

order containing Oy, Ri(L) ~ ((; g)

REMARK. All maximal orders are B* conjugate each other. i.e. all

maximal orders are isomorphic to

(8 g) g{@ ?);a,ﬁ,aeoandw,eo}

(See 17.3 [12)).
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2.5 By lemma 2.5 and the remark, all maximal orders and R;(L)
are hereditary orders (See p27 [12]).

THEOREM 2.6. Let the notations be as above. Then
(1) if L is unramified,

Ry (L\Rg (L) = ¢* — q,
|R32(L\R3, (L) = ¢ forn > 1,
(2) if L is ramified,

[RY(LN\Rg (D)l =q+ 1, [RF(L\R{(L)| = ¢~ 1 and
R (D\R; (L) =q forn>2.

Proof. First, assume that L is unramified. If n > 1, define a map
¥ : Ry (L) — PE/P"Jrl by ¥(a + £68) = 8/a& mod P”'H. Then for
a+€8 € Ry (L) = (0L +EPE)*. o +£0' € R2n+2(L) (Or +
PP * e a,0f € OF and B € PP, G € PPt

Ba+ a’p’ 6’a’+(’,6’

W o+ e) = mmm = S

e+ 1
mod Py

mod P;:L+l .

a
Hence % induces a map 3 of R o(D\RS, (L) onto Pp/PPHY. Tt is
not difficult to show ¢ is one to one. Thus Ry 2% (L NR3, (L) =
|Pp /PPt = g2 Next, the direct computations show that R (L)\ R}
(L) ={RS (L), RS(L)E}U{RS (L)(1+ &v)|v € (O, /Pp)*}, which is of
2+ (¢° — q—2) = ¢% — g elements.

Second, assume that L is ramified. |R]/R{| = ¢ — 1 is calculated
by Hijikata [4] and Ry\Ry = {R). RS €} U{RJ (1 + &v)|v € S} where

= {z € (O/P)} IN(JLW #1 mod P} by similar calculations as in the
unramlhed case. Slnce the number of elements in S'is ¢—3, |Ry /RS | =
24 (q—3) = q— 1. Finally, if n - 2, let ¢ be a map from R* onto
PP/ Pr defined by (o + €3) = % mod PJ*, waere o + £0 € RX.
Then

W((a+E0) (o' +€8') = *i

i
|
+
|
=
S
&
g,
=3
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which means that 4 is a homomorphism of R} onto PP '/Pp. Tt is
easy to see that ¢ induces an isomorphism of RX /R, onto P!/ Pp.
Thus [Ry \Ry| = |[Pp /P = 10L/P| = ¢ O

3. Embeddings

3.1 Throughout this section, we assume that % is a nondyadic local
field and B is a quaternion algebra which is split over k. Let K be a
semi simple algebra of dimension 2 over k (i.e. K is either a field or K
is isomorphic to k x k ). Suppose that K is a field. Then the definition
of R,,(K) is given in the definition 2.3. If K is not a field, then we will

denote by R,,(K) = ( ]gn g) In this section, we will determine all

possible embeddings of R, (L) into R,,(K) for nonnegative integers n
and m. By an embedding we mean a k ( or Oy, the ring of integers)
injective homomorphism.

3.2 Assume that K C B. Let Qg be the maximal order of K. We
say Ok is embeddable in R,,(L) if there exists an embedding ¢ of K
into B such that ¢(Ok) C R,(L). According to theorem 17.3 [12], all

maximal orders of B are B* conjugate to each other. Hence Ok is
embeddable into Ry(L) and Oy, is embeddable into Ry(K).

DEFINITION 3.1. Let K and I. be quadratic extensions of k con-

tained in B. Then u(K, L) is the nonnegative integer or oo such that
(K, L) > n if and only if Ok is embeddable into R, (L).

3.3 We introduce the following notation;
AR, (L) = {A(a)la € R,(L)} mod U2,
where U = O and A(a) = Tr(a)? — 4N(a).

LEMMA 3.2. Let K and L be quadratic extensions of k contained
in B. The followings are equivalent.

(1) Ok is embeddable in R,(1.).

(2) A(K) € AR, (K).

(3) n < pu(K,L).

(4) R,(K)~ R,(L)

(5) Oy is embeddable in R,,(K).
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Proof. By the definition of 3.1. (1) is equivalent to (3). (1) implies

(2).

Suppose that A(K) € AR,(L;. Then there exists z € R, (L) such
that A(K) = A(z) mod U?. Let K" = k + kz. Then Ok~ C R,(L).
A(K) = A(K") mod U? implies that K ~ K”. Hence Ox ~ Ok C
R, (L). This proves (2) imples (1.

(4) = (1) is clear. Conversely, suppose Ok is embeddable in R,,(L).
Then R, (L) is isomorphic to an n-th (%-th for K unramified ) largest
order containing Ok, which is R,,(K) by lemma 2.4.

(4) = (5) is clear and (5) = (4) is immediate from (1) and (4). O

COROLLARY 3.3. Let K and L be quadratic extensions of k con-
tained in B. Then p(K,L) = u(L, K).

Proof. 1t is immediate from lernma 3.2. O

LEMMA 3.4. If K is an unramified extension field and L is a ramified
field, or if K is an unramified extension fleld and L ~ k x k, then
u(K,L) = u(L,K) = 0. On the other hand, if K is a ramified extension
field and L ~ k x k, then u(K,L) = p(L,K) = 1.

Proof. Since all maximal orders of B are B* conjugate to each
other, u(K,L) > 0 for all cases. If K ~ k x k, then an order of B

which contains O is isomorphic to ( for some nonnegative

P O
integer n (See [4]). If K is an unramified extension field of k, then R,

is not isomorphic to an order of ( I?” g) unless n = 0. However, if

_ (O O
(8
2.5. If n > 2, R,(L) is not a maximal order and there are no distinct
orders R', R" such that R, (L) = R’ N R"” by lemma 2.4. Thus, by 2.2

in [4], R,(L) # ( 1(3“ 8) Hence lemma is proved. O

K a ramified extension field of k, then R;(L) by lemma

LEMMA 3.5. Assume that L and K are nonisomorphic quadratic
ramified extension fields of k contained in B. Then u(K,L) = p(L, K) =
2.
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Proof. By lemma 2.4, u(K,L) > 1. So let 7 == a + £83 € Ry(L) =
Op+£01. A(rk) = A(a)+4N(8) and ordi(A(e)) > ordx (A(OL)) =
1. So B8 € Py, which implies 7 € Ry(L). On the other hand, if
Tk = a+ &8 € Ry(L) = Op + £PE, A(e) = A(L) mod U? since
B € P?. However, as we assumed that L and K are not isomorphic

each other, this is a contradiction. Hence Ok is not embeddable into
R3(L). O

Finally, we are now able to answer the questions about the embed-
dability. as follows.

THEOREM 3.6. Let K and L be quadratic extensions of k in B.
The number (K, L) is determined as follows.

(1) If K is an unramified field extension of k, then

0 if K is a ramified extension field of k
w(K,L) = orif K~kxk
o0 if K is an unramified extension field of k .

(2) If K is a ramified field extension of k, then

0 if K is an unramified extension field of k
1 if K~kxk
(K, L)y =< 2 if K is a ramified extension field of k and

K is not isomorphic to L

o0 if K is isomorphic to L .
(3) If K ~ k x k, then

0 if K is an unramified extension field of k
p(K,Ly=1<¢1 if K is a ramified extension field of k
00 if K~Fkxk.
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4. Optimal embeddings

Throughout this section, we assume that B it a quaternion algebra
over k and K is a semi simple algebra of dimension 2 over a nondyadic
local field k. (i.e. K is either a field or K is isomorphic to k x k). Also
let a generate the maximal order O + On™a of X where O is the ring
of integers of k.

DEFINITION 4.1. Let o be the same as above. For a nonnegative
integer m,

Emb(#™a, Ry,)

= {¢|¢ is an embedding of k(a) into B with ¢(7™"a) € R, }
Emb.,(7™a, R,,)

= {¢ € Emb(m™a, R,,)|¢(k — ka) N R, = ¢(O + O7™a)}

where n > 0.

4.1 Two different embeddings ¢;,¢2 € Emb(r™a, R,,) are said to
Ry, equivalent if there exists v € R such that ¢y(z) = yé1(z)y ! for
allz € O+ On™a.

We will calculate the number of equivalence classes of optimal em-
beddings from an order of K, O+ On™« into the various orders, R.(L)
containing the ring of integers of a quadratic extension field L. The
number of equivalence classes of optimal embeddings will play the cen-
tral role in computing the traces of Brandt matrices associated with
these orders, R, (L) [8].

4.2 From the definition 4.1, the relation betveen embeddings and
optimal embeddings is Emb,, (7™ a, R,,) = Emb(7"«, R,,)~Emb(7™"!
a, Ry,) for m > 1. Also, when n > 3 for L ramified and n > 2 for L un-
ramified, Emb(n™a, R,) = Emb(s™ 'a, R,, ;). Thus Emb,,(7™a, Ry,)
can be reduced to one of the followings;

Emb,, (7", Rg), Emb,, (7 a, Ry) or Emb,,(a, R) for some noneg-
ative integers 1,1/, k.

In [5],[10}, it is easy to see the number of R,, >quivalence classes of
Emb,, (7" a, R,,) is 1 for m = 0,1 and the number of R, equivalence
classes of Emb,,(c, Ry) is 2.
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Then by Noether Skolem theorem, each of these can be expressed
with the cosets of a certain conjuagte of an order, @ + Q@a. That is,
we have the following theorem.

THEOREM 4.2. Let the notations be same as 4.1. If L is unramified,
then there exists g € B*

Emb,, (7™ a, Ry) = R /(O + O™ gag 1)~

where m™gag™! € Ry — Ry, and Emb,(a, Ry) = R /OX.
On the other hand if L is ramified,

Embe,(n™a, Ry) = H{‘/((9~|~(97r"”‘glag1_1)>< URf/(O—FOnggag{l)x

where the union is disjoint and W"‘giagz-_l € Ry — R3 foreachi = 1,2,
and

¢ if k() is an unramified field extension of k
Emby,(a, Ry) = ¢ R/OX ifk(a) is an ramified field extension of k
Ry /(9102971 U (9205 g31) if k(a) ~ k @ k.

Proof. See lemma 5.17 in[7] d

Thus R, equivalence classes of optimal embeddings are written as
double cosets of R, and a certain conjuagte of @ + Qa. As same
manner as in [5], we are able to identify these double cosets with the
product of R, \R}. By theorem 1.6, the number of R, equivalence
classes of optimal embeddings can be computed.

4.3 In [1], Brezinski has found the general formula of the equiv-
alence classes of optimal embeddings with the global approaches of
arithemetic theories of primitive orders. Before we copy Brezinski’s
theorem, let us explain the notations first. Let R be a complete dis-
crete valuation ring with maximal ideal m and perfect residue field
R/m. Let A be a quaternion algebra over the quotient field k of R.
If an R order A is generated by {z,z2, 23,24}, then the discriminant
d(A) of A is the square root of the R-ideal (det[Tr(z,%;]). If d(A) = m™,
let nA = n.
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An order A is a Bass order if and only if A is a primitive order (See
proposition 1.11 in [2]). Hence R, (L) is a Bass order for a nonnegative
integer n.

4.4 Let J(A) be the Jacobson radical of A. Tle definition of e(A)
is as follows.
1 it A/J(A) > R/mx R/m
e(A)=<¢ 0 if A/J(A)2R/m
-1 if  A/J(A) is a quadratic extension of R/m.

If £ > 1, the Jacobson radical of &; + {Pf is Py, -- SP;f and
(O +&PF)/J(Or +EPF) = O,/ Py,

hence o ]
if L is unramified

1

(O PFy =

(O +&F7) { 0 if L is ramified.
Thus for n > 2, if L is ramified, then e(R, (L)) = 0 and if L is unram-
ified, e(R, (L)) = —1.

4.5 Let L be a quadratic k algebra. Then L is one of the following
types; k x k, a unramified extension field of k, or a ramified extension
field of k. If Sy is the maximal order in L, then let S; = R + ©*Sy.
Thus S; = @ 4+ Onta where Sy = (2 — Oa. Then

q if ¢:>2
87,8 - g—1 if i:=1and L D k i split
S q if 2::1and L Dk is ramified

g+1 if 2-=1and L Ok is unramified.

where ¢ = |R/m/|. Finally, M(A) s the overorder of A and M2%(A) =
M(M(A)).

THEOREM 4.3. (Brezinski) Let A be a Bass order with e(A) = —1
and let S; be a quadratic R-order in L. If ny > 2 and 7 > 1, then
with the exceptions of i = 1 and M(A) maximal n a split k- algebra
ori=1and L D k unramified:

[M(A)* A*
571+ 57]

(4—1) (E(S,L',A) =
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where [M(A)" : A*] = { qz —q if M(A) is maximal in a split A
q otherwise.
In the exceptional cases:
1 ,
(42) e(S1,8) = femgmr(MUA)" £ A%)e(So, M(A) - e(S5, A}

The initial values of e(S;,A) are following. ¢(Sp,A) = 2 if L > K
is unramified, and €(So,A) = 0 in all other cases, while e(S;,A) for
maximal orders A are given in (4-2) if A is split and A is maximal.

4.6 With the above theorem, we tabulate the equivalence classes
of optimal embeddings. Emb},(7™a, R,) means the number of R}
equivalence classes of optimal emebddmgs Emby,(m™a, Ray,) for the
notational convenience.

Suppose L is an unramified quadratic extension field of k. The na
of Ron(L) = Op 4 £PP is 2n and e(Ry, (L)) = -1. It now suffices to
calculate the initial values of Emb}, (1™a, R,,) by (4-1).

Emb*p(ﬂ a, Ron) = e(Sp, Rgn) depends on what k£ + ka is. Thus
let K =k + ka.

If K is the unramified quadratic extension field of &, i.e. WK, L) =
oo by theorem 3.6, then by 4.2 Emb* o0, Ron) = 2 for n > 1 and
Emb},(a, Rp) = 1. Also, by (4-2),

qil{[sz 2(L)" 1 Ron(L)"]e(So, Ran—2(L))

—e(So, Ron (L))}
[ @ -9 12}, =1
B a{2® -2}, n>.

Il

Emb?, (ra, Roy) =

for n > 2.

If K is a ramified extension field of k, i.e. pu(K, L) = 0 by theorem
3.6, then Emb} (a, Ra,) = 0 for n > 1 and Emb} («, Rp) = 1 by 4.2.
Also, for m > 1,

Emby (77 «a, Ry) = —~{[Ro(L)* : Ro(L)"]e(So, Ro(L)) — e(So, Re(L))}

{(¢* —q)-1—0}.

»-Qli—‘thy-—-l
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Suppose K ~ k x k. By theorem 3.6 Emb} (o, R:n) = 0 for n > 1 and
Emb},(a, Rg) = 1 by 4.2. Also, for n > 1

Embg (ma, Ray)

q—i“{ﬂRO(L)* t Ro(L)"|e(So, Ro(L)) — e(So, Ro(L))}

= 21%“1'{(‘72 ~q)-1-0}.

Il

Hence, by (4-1), Emb?,(7™q, Ky, is recursively calculated and Rj,
equivalence classes of Emb}, (7™, Ry,) are given as follows.

K : unramified K : ramified K ~k x k

m>n qn _ qn—-l qn _ qn—;i qn _ qn—l
m=n>0 qn - Qqn*‘. qn _ an; qn
m=n=20 1 1 1

m<n 2q™ — 2™ ! 0 0

where ¢ = |O/P| and ¢! = 0.

THEOREM 4.4. (Brezinski) Let A be a Bass order with e(A) = 0
and let S; be a quadratic R-order in L. If ny > 3 and i > 1, then with
the exceptions of i = 1 and L O k ramified:

[MZ(A)" - A*]

(4—3) (3(51', A) = [Sz* i g*}

e(Sz 17 (A))7

where

q* —q  if Ais split and M?(A) is hereditary,

[M2(A)": A"} =4 ¢®+q  if A is ramified and M2(A) is hereditary,

q° otherwise.

In the exceptional cases:

(4-4) e(S1, A) :—{(M2( )"+ A%)e(So, M2(A)) — e(So, A)}.
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The initial values of e(S;, A) are given in the following way. If L O k
is ramified, then for ny = 2, e(Sp,A) = ¢ — 1 or e(Sp,A) = g+ 1
depending whether A is split or ramified, and if ny > 3, (S, A) # 0,
then

[ g™ ifwp = [na/2] or Qa > [(na +1)/2],
8(509A) - Q .
2¢*** otherwise

If L O k is unramified or split, then e(So,A) = 0 for ny > 2. If
na = 2, then e(S;,A) = 0 when A is ramified and e(S;,A) = 2q — 2
when A is split with two exceptions: e(S1,A) = 2 when L D k is
unramified and A is ramified, and e(S;, A) = 2q when L D k and A are
split.

4.7 Here, we are restricted ourselves only when A is split over k
and primitive orders, R,(L), of A containing the ring of integers of
L which is a quadratic extension field of k. Then by lemma 2.4 and
remark below, all maximal orders are hereditary. If L is a ramified
extension field of k, R1(L) is also a hereditary order by lemma 1.5 [12].

Suppose L is a ramified quadratic extension field of ¥ and K is a
quadratic extension field of k. Then the np of R,.(L) = Of + §PE"1
is n by 4.3.

Here Emb} (7", R, ) means the number of R} equivalence classes
of optimal emebddings, Emb,, (7", Ry,) for the notational conve-
nience. Further, let ¢ = |O/P] and ¢! = 0.

Case i) K = k + ko is the unramified quadratic extension field.

That is, u(K, L) = 0. Emb{,(a, R} = 0 for v > 1 and Emb},(c, Ro)
= 1by 4.2. On the other hand, Embj,(7™a, R;) = 2 and Emb} (1™ «,
Ry) =2¢—2form > 1.

Embj (7", R2,) Embj (7™, Rany1)

m>n+1 n>0 2¢" —2q" 1 2¢™ — 2" !
m=n n>0 2¢" —2¢" ! 0
m>1 n=>0 1 2
m =20 n=70 1 0
m=10 n=1 0 0
m >0 n>m+1 0 0
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Case ii) K = k + ka is a ramified quadratic extension field and
K is not isomorphic to L. ie. wu(K,L) = 2. Emb} (o, R,)) = 0
for v > 3 and Embj, (o, Ry) = 1 by 4.2. Emb; (a, Ry) = ¢ — 1,
Embj,(a, Ry) = 1 by 4.2, Emb},(m"a, R;) = 2 and from the theorem

4.4, Emb} (7™, Ry) = 2¢ — 2 for m > 1.

Emby (7 a, Ryn) Emb}, (7" a, Rop 1)
m>n-1 n>0 2q" — 2¢™ 1 2q" — 2q”—1
m=n n>0 2q71v _2qn~1 qn_qn——l
m>1 n=24_0 1 2
m =0 n =10 1 1
m =0 n=1 g—1 0
m =0 n>1 0 0
m>1 n=m+1 g —q" ! 0
m >0 n>m+41 0 0

Case ili) K = k + ko is a ramified quadratic extension field and K
is isomorphic to L. i.e., u(K, L) = oo.

By 4.2, Emb} (o, Ro) = 1 and Emb} (, R1) = 1. From the theorem
4.4, Emb} (o, Ry) = g—1. For v > 3, by theorem .6, Emb} (o, R,) #
0. Since wg, =0 and Qg, =1, Emb} (o, R,) = 2¢.

Emb} (7™a, R1) = 2 and Emb},(7™a, R;) = 2¢ — 2 for m > 1.

1
Emb?” (7ra, Rg) :E{[RI . R;]G(SO,Rl) - 6(50,R3)

op

:é((f —q)-1-2q)

=q—3
and
1
Emb;, (ra, Ry) =5{{RS : Rjle(So, R2) — e(So, R4)

:é{qz(q ~1) —2q}

=¢* —q--2.
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Hence by (4-3), we obtain

Emb}, (n"a, Ry,)  Embj,(1™a, Rony1)

m>n+1 n>0 2¢" —2¢" 1 29" — 2¢" !
m=mn n>0 2¢™ — 2¢" ! q” — 3g" 1
m>1 n=>0 1 2
m=20 n=20 1 1
m=20 n=1 qg—1 2q
m=10 n>1 2q 2q
m>1 n=m+1 ¢ —q"" ! -2¢g"? 2q™ — 2¢n 1
m>0 n>m+1 2¢mtl —2¢m-1 2qmtt — 2¢gm 1

Case iv) Suppose K ~ k x k. l.e.u(K,L) =1
Emb},(a, R,) = 0 for v > 2 and Emb},(a, %g) = 1 by 4.2. On

the other hand, Emb{, (7a, Ro) = 2¢, Emb} (7™ e, Ry) = 2¢ — 2 and

op

Emb} (7" a, R3) = 2¢ — 2 for m 3> 1 by the theorem 4.4.

1]

By (4-3), we have

Embj, (7", Ren) Embj, (7" a, Rony1)

m>n=0 1 2
m>n> 0 2qn _ 2qn-1 2qn _ 2qn—l
m=n>0 2q™ 2q* — 2¢" 1
m<n 0 0
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