AN INEQUALITY OF SUBHARMONIC FUNCTIONS

  • 발행 : 1997.08.01

초록

We prove a norm inequality of the form $\left\$\mid$ \upsilon \right\$\mid$ \leq (r - 1) \left\$\mid$ u \right\$\mid$_p, 1 < p < \infty$, between a non-negative subharmonic function u and a smooth function $\upsilon$ satisfying $$\mid$\upsilon(0)$\mid$ \leq u(0), $\mid$\nabla\upsilon$\mid$ \leq \nabla u$\mid$$ and $\mid$\Delta\upsilon$\mid$ \leq \alpha\Delta u$, where $\alpha$ is a constant with $0 \leq \alpha \leq 1$. This inequality extends Burkholder's inequality where $\alpha = 1$.

키워드

참고문헌

  1. Lecture Notes in Mathematics v.1384 Differential subordination of harmonic functions and martingales, Harmonic Analysis and Partial Differential Equations (EL Escorial, 1987) D. L. Burkholder
  2. Ann. Probab. v.22 Strong differential subordination and stochastic integration D. L.Burkholder
  3. Subharmonic functions W. K. Hayman;P. B. Kennedy
  4. Analysis I S. Lang
  5. Math. Z. v.27 Sur les fonction conjuguees M. Riesz
  6. Convex functions A.W.Roberts;D. E.Varberg
  7. Trigonometric Series, (2nd ed.) A. Zygmund,