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UNIQUE FACTORIZATION IN TWO-DIMENSIONAL
COMPLETE INTERSECTIONS

SANGKI CHOL

ABSTRACT. Unigue factorizat:on of 2-dimensional complete inter-
section is investigated by using the determinant riethod inrroduced
by D. Eisenbud.

1. Introduction

It is often quoted in undergraduate class that prime itegers are no
longer prime elements in some ntegral extensions of the ring of the
integers. For example, neither 2 nor 3 remains «s a prime in Z[/-5).
even 2 is not irreducible in the ring of Gaussian integers Z[i]. On the
other hand R[x} is factorial if R is su, and an element in R is a prime
element of /7 if and only if it is a prime element of R[x] (due to Gauss).
For the formal power series ring R{[r]]. the corresponding question is
not true.

ProsLEM 1.4, For which U.F.Ds R, is th formal power serics
ring Rl[x]] a UF.D. ?

The problem has been mvesgated since early 1900s and substantial
answers were made both for the positive case @nd the negative case
mn 1960s.  The first success was made by E. Lasker in 1905 for an
infinite field k. Quite generally Samuel and Buchsbaum proved that
the problem is true if 2is a locally regular U.F.D. ([13], [2]). Attributed
to another result of Samuel (Theorem 1.2), 2-dimensional local factorial
rings have heen brought into focus and extensive results were given by
Scheja, Danilov and Lipman.
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THEOREM 1.2. (Samuel [13]) Let R be a locally Cohen-Macaulay
factorial domain. If Ry[[z]] is factorial for any height 2 prime ideal p
in R, then R|[[r]] is factorial.

Samuel found counterexamples to Problem 1.1, which were not com-
plete ([13], [S2]). So he thought that Problem 1.1 is true if R is a com-
plete local U.F.D. It is true for local complete U.}.D.’s when depthRR
is not equal to 2. Note that R is either a field or a DVR if R is a local
U.F.D. with depthR < 1. Then the problem is known to be true by
Lasker, Krull and Cohen.

THEOREM 1.3. (Scheja, [15]) If R is a complete local factorial do-
main with depth R > 3. Then R[[»]] is factorial.

As a consequence of Theorem 1.3, if R[[z]] is factorial for a complete
local U.F.D. R, then so is R[[z1,--- ,x,]] for any n > 1. However, the
2-dimensional case was still remained open. Scheja found essentially
all the 2-dimensional local complete U.F.D.’s for which Problem 1.1 is
true.

The first counterexample to Problem 1.1 was introduced by Salmon.
Let k be any field and u, x, y and z are variables. Then R = k(u){[z,y,
2])/ (2 +y3 +uz®) is a UFD, but R[[T]] is not [12]. But if we replace the
field & by its algebraic closure, then R is no longer factorial. Lipman
described the situation that R is not a genuine U.F.D., in that the
divisor class group of R has manv non-zero elements which happen
to be concealed thinly’. He has given a remarkable result on the 2-
dimensional complete local UF.D.5".

THEOREM 1.4. (Lipman [9]) Let (R, m) be a 2-dimensional local
ring such that R/m is algebraically closed of characteristic # 2,3,5.
Assume that R is not regular. Then the completion R is factorial if
and only if R = S/(x? +4* + 2% for a 3-dimensional regular local
ring S and a regular system of parameters x,y,z of S.

If R is not regular and R/m is real closed, thea he showed that R
has rational singularity and is factorial if and only if m is generated by
x, 1, and z satisfying one of the following relations:

.,1.2 + :1/3 - 25 =0

24y 2t =0
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2 =0
Pyt =00 > 1

In this note, we are going to disuss some of the 2-dimensional comn-
plete local U.F.D.’s that is not in the above list .

2. Determinant

Let (R,n) be a noetherian local ring. An ideal T of R is said to be
perfectif ht{ = pdR/I. By the Auslander-Buchsbaum formula (1], 1f 1
is perfect. then

depthR/I + htl = depthh.

If ['is a proper ideal of R with gradel > 2. Then the Hilbert-Burch
Theorem says that [ is perfect of height 2 if and only if I is the ideal
of n x n minors of a n x (n + 1} matrix with entries in R [3].

LEMMA 2.1. Let (R.m) be & regular local ring and I an ideal of R
with htl > 2. If I is perfect, then it is unmixed. The converse holds if
dim R < 3.

Proof. Suppose that I is periect. Then

depthR/[ = depthR — pdR/I
= dim R — ht]
=dimR/I.

Thus [ is unmixed.

Assume that dim R = 3 and I is unmixed If ht] = 3. Then
depthR/I = dim R/I = 0 and the assertion is trivial. So suppose that
ht/ = 2. Since [ is unmixed n: is not an associated prime of [ and
depthR/I = 1. Then pdR/I = depthR — depthR/I = 2. Thus I is
perfect. 0

An element f of a noetherian local ring (R, 11) is called a determi-
nantif f can be expressed as the Jdeterminant of en & x & matrix (k>2)
with entries in the maximal idea m. Eisenbud has found that the fac-
toriality of surfaces of embdding dimension 3 is decided by computing
the determinant.



536 Sangki Choi

THEOREM 2.2. (Eisenbud [7]) Let (R, m) be a regular local ring and
S = R/(f) for some f in R. If S is a« UFD then f is not a determinant
in R. Conversely, if f is not a determinant and dim R < 3, then S is a
UFD.

If f is a determinant of a & x k mnatrix A, kK > 2 then let B be the
(k —1) x k matrix obtained from A by deleting the first row. The ideal
I of (k —1) x (k— 1) minors of B is unmixed ideal of height 2 by the
Hilbert-Burch Theorem and Lemma 2.1. Thus I/(f) is an unmixed
ideal of height 1 in S that is not principal. So S is not factorial.

Now suppose that R is of dimension 3 and f in not determinant in
R. For any unmixed ideal 1/(f) of 5, I is the ideal of k£ x & minors of a
k x (k+1) matrix A with entries in m (by the Hilbert-Burch Theorem
and Lemma 1). If f is not a determinant, then some (k —1) x (k — 1)
minor must be a unit in .5 and 7 is generated by two elements including
f. Thus I/(f) is principal and S is factorial.

If R is a regular local ring R with dim R > 4 and f is not a deter-
minant in R. Then it is not necessarily true that A/(f) is a UFD.

THEOREM 2.3. Let K be a real closed field and iR be the 4-dimensi-
onal regular local ring K[x,y, z, w}(, 4> Then f = 22 +y* + 22 +w?
is not a determinant in R.

Proof. Suppose f is a determinant in R. Then it must be a determi-
nant of a 2 x 2 matrix A since f ¢ m3R where m = (7, y,z,w)K|r,v, z,
w]. Consider the entries of A as rational functions in x.y, z and w and
clear the denominators in each entry of A. Thus f'1 + g) = det B for
some g € m and a matrix B with entries in K|z, y, z,w]. Put

B = < f] f'Z > )
f & f 4
Notice that the elementary row and column operations do not change
the determinant up to multiplication by units. So we may assume that

fi = =+ ay + bz + cw + higher degree terms  a,b, ¢ € K.

Using the elememtary operations again, remove the linear term of x in
the entries fy and f3. Comparing the coeflicients of each side of the
equation f(1+ g) = det B we obtaiu

f1 =1 —ay — bz — cw + higher degree terms.
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Therefore,

f(l4+g)=detB =
&+ ay + --- + higher terms a’y + - - - + higher terms
a’’y + - - + higher terms ¥ — ay — - - - + higher termns

Now compute the quadratic terms of each side of the equation f (1+
g) = det B. Then

(1) a’ +a'a = -1,
(2) P4y =1,
(3) 2ab+a't" +a"t = 0.

Since K is real closed, the equation (1) and (2) impliy that
a'a' b’y £ 0.
Substitute for a” and " in (3) and multiply o’ and &'. Then

0=a”B*+1)+ b (a® + 1) — Zaba’t’

= (ab' — a'b)? +a’* + b7
This forces that @’ = & = 0 which is absurd. O

Let K be a real closed field. The Proof of Theorem 2.3 shows that
none of

f=a by’ + 22 4w
f/ - :1:2 Vyz + 22

. 9 s y
= 72 - Yo+ 2 —w?

are a determinant in R = K[, 4. 2, 0](s 2 w)- ~hus R/{(f') as well as
R'/(f') is a UFD for a 3-dimensional regular local ring
R' = K[r,y, z](s4.2) (Theorem 2).

Note that R/(f"”) is also a UFD [F, 11.6]. But S = R/(f) is not
a UFD. The divisor class group CI(S) of S is infinite cyclic. Let F
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be the algebraic closure of K. Then f is a determinant in Rp =
Flr.y. 2. w](z 4,2 0). That is,

r4iy zA4aw

" . Y 5 |
oyt 4wt = ‘ .
| =zt Ty

Let Sp = Rp/(f). Then CI(Sp) = Z and it is generated by cl(p) of
height 1 prime ideal p = (z + iy, + iw)Sp of Si. Let ¢ = (:n2 +
y2, 2% + w?, rz + yw, rw — yz)S, then ¢ is a height 1 prime of S and
cl{qSr) = 2cl(p). Thus the natural map CI(S) — CI(SF) is not the

u

zeor map. Therefore CI(S) is infinite cyelic [FF, 11.6..

3. Two-dimensional complete intersections

Let (S,n) be a 3-dimensional regular local ring with x, y and z a
regular system of parameters of S. If the residue cless field S/n is nei-
ther algbraically closed nor real closed, Then the complete intersection
R = S/(f) is factorial with f = 22 4 y* +uzb or f == 22 + ¢y +uz? for
suitable u« in S.

THEOREM 3.1. Let K be a field and w € K. Then K[[r,y.2]]/(x* +
y? +uz%) is a U.F.D. if and only if there are no solutions in K for the
equation T3 — T¢ — u = ( in two variables T\ and T5.

Proof. Suppose that there are n» solutions in £. for the equation
TP — T3 —u=0. It's enough to prove that f = 22 -+ y* + u2% is not a
determinant in S = K[, y, z]{. Assame f is a deter ninant in .S. Then
it must be a determinant of a 2 x 2 matrix A since f ¢ n®. Put

a b
A= :
¢ d,
For each element a € S, write @ == Y ai,, xx'y? :* for api v € K.

Notice that the elementary row and column operations do not change
the determinant up to multiplication by units. So w2 may assume that

a =+ a,y + a.z + higher order terms.

Using the Gauss elimination, remove the terms of positive powers in x
in the entries b and ¢. That is, we reduce to the case that b, .« =
( v =0 for i > 1.

iz



Unique factorization in two-dimensional complate intersections 539

Either b, or ¢, is nonzero, otherwise f,s = 0. Say ¢, # 0 and we
may write
¢ =y+c,z + higher order terms.

By the Gauss elimination again, a,.i,,x = dyiyi.x =0 for j > 1.

Comparing the quadratic termns of the each side of the equation
f = ad — be, one can find that there are no linear terms in the entries
a, b and d except a, = d, = 1. Compute the cabic and higher order
terms:

fy’zz =C; — byz =0, fyz'z = —b?‘,:(;z — bzz =0 and fz(; B A—bzz()z = 0.

This forces that ¢, = b,, = b, = (). From the computation of the
coefficients of rz? and 2%, we obtain a,2 = d.2 = 0. Thus b.s =

—fyz3 = 0. Thus
rtaszt b (Y by F bzt )

\y+02222+- . :77—7,z3z3+~'

2y st =

This forces the equaton:

Co2 b2 =0, ¢uby,2 + b =0, and c.2b,4 — (1,33 —u = 0.

Therefore ¢?, — a?, — u = 0. This is impossible.
2

Now suppose that there are a and 3 in K satisfying 3% —a? —u = 0.
Then
22 4 4 ouzb = S (/)3: —(y* = By:? ‘3}' 3221)
' y+ gz ro—ixz
Thus f = 2 + y* + uz® is a determinant and A'[[z,y, z]]/(f) is not a
U.F.D. O

As a corollary of Theorem 3.1 R = k(u)[[x,y, 2]]/(z* + y* + uzb) is
factorial. However, if the algebraic closure F of i:(u) is substituted for
k(u), then R" = F{x.y, z]]/(x* 4+ y? +uz%) is nor a UFD. It is easy to
express 22 + ¢ + w28 as a deteruinant in Fllz,4,z]]. That is,
x4 ()28 -y

y b =) 1/223

5 .
oyt uz® =

Note that p’ = (y,x — (—u)"/22%)R’ is a prime ideal of height 1 in R’
that is not principal. It is said to be ’concealed thinly’ in the divisor
class group of R [10].

. . . ) : .
Finally, we examine the relation 22 4+ y% + uz® = 0.
Yo !
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THEOREM 3.2. Let K be a field and w € K. Then K[[r.y.2]]/ (2% +
Y Tt ”33) is a U.F.D. if and only if therc are no solutions in K for the
equation T? 4 u = 0.

Proof. Suppose that T3 4w is rreducible over K. Following the
same procedure as in the Proof of Theorem 3.1, we are forced to solve
the equation ¢ +u = 0. It is a conrradiction and 12 + y? + uz3 is not
a determinant in K[[x,y, z]l.

: . . /. [
Assume that T2 + u is reducible over K, so u!'/% ¢ K. Then
. 2 1/3,,. 2/3 .2
2 : : &r =y —uyz +utCz
rt+ '.1/; + ozt = 1/3 ( Yy )
y+u/lz T
That is, r*+y* +uz3 is a determinant in K[z, y, 2]} and K[z, y. z]]/(x?
+y2 +uz?) is not a U.F.D. N

Notice that Q[[x, y. z]]/(x* +y* +22%) is factorial, but Q[[x. y. 2]}/ (+*
+y* +22%) is not. In fact, for any 3-dimensional regular local ring S
and a regular system of parameters x.y,z of S, r? + y3 + 22% is a
determinant in .S. That is,

4 (2 g2 4
0, 3 o6 _ |05z —(y® —3yz® +927)
r ‘2‘“ - N ‘
byt ez Y+ 327 T =523
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