References
- Math. Comp. v.36 Superconvergence of a finite element approxiamtion to the solution of a Sobolev equation in a single space variable D. N. Arnold;J. Douglas, Jr.;V. Thomee
- Numer. Math. v.16 Bounds for a class of linear functionals with applications to Hermite interpolation J. H. Bramble;S. R. Hilbert
- The finite element method for elliptic problems P. G. Ciarlet
- SIAM J. Numer. Anal. v.12 Numerical solution of Sobolev partial differential equations R. E. Ewing
- SIAM J. Numer. Anal. v.15 Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations R. E. Ewing
- Aequationes Math. v.14 Galerkin approximations to non-linear pseudo-parabolic partial differential equations W. H. Ford
- Math. Comp. v.27 Stability and converegence of difference approximations to pseudo-parabolic partial differential equations W. H. Ford;T. W. Ting
- SIAM J.Numer. Anal. v.11 Uniform error estimates for difference approximations to nonlinear pseudo-parabolic partial differential equations W. H. Ford;T. W. Ting
- IMA J. Numer. Anal. v.7 Convergence of a finitedifference scheme for secondorder hyperbolic equations with variable coefficients, B. S. Jovanovic;L. D. Ivanovic;E. E. Suli
- J. Math. Anal. Appl. v.165 Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions Y. Lin;T. Zhang
- Numer. Math. v.47 Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension M. T. Nakao
- CMAMR191 On convergence of finite difference schemes for generalized solutions of parabolic and hyperbolic partialdifferential equations A. K. Pani;S. K. Chung;R. S. Anderssen
- CMAMR391 On convergence of finite difference schemes for generalized solutions of parabolic and hyperbolic integrodifferential equations A. K. Pani;S. K. Chung;R. S. Anderssen