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MULTIPLICITY-FREE ACTIONS
OF THE ALTERNATING GROUPS

JOSE MARIA P. BALMACEDA

ABSTRACT. A transitive permutation representation of a group G
is said to be multiplicity-free if all of its irreducible constituents are
distinct. The character corresponding to the action is called the
permutation character, given by (15)%, where H s the stabilizer of
a point. Multiplicity-free permutation characters are of interest in
the study of centralizer algebras and distance-transitive graphs, and
all finite simple groups are known to have such characters. In this
article, we extend to the alternating groups the result of J. Sax|
who determined the multiplicity-free permutation representations
of the symmetric groups. We classify all subgrcups H for which
(15)4n,n > 18, is multiplicity-free.

1. Introduction

Let m be the permutation character associated with the action of a
group G. If the action is transitive, then 7 = (]H)G, where H is the
stabilizer in G of a point. 7 is said to be multiplicity-free if all of its
irreducible constituents are distinct. Such characrers arise in the study
of centralizer algebras of transitive permutation representations. The
multiplicity-free condition is equivalent to the commutativity of the
centralizer algebra. It is also well known that if G is the automorphism
group of a distance-transitive graph, then the peimutation action of (&
on the vertices is multiplicity-frec.
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J. Saxl started the systematic investigation of the multiplicity-free
permutation representations of the symmetric groups [10], and the clas-
sification program for other groups is well underway. Recently the
multiplicity-free permutation characters of the sporadic simple groups
have been determined [5].

Saxl’s result was contained in a conference proceedings article where
he gives a sketch of the proof. The purpose of this note is to provide
an extension of Saxl’s result to the alternating sroups. The proof
is patterned after that of Saxl, but we give details when necessary.
Moreover, extra arguments are needed to investigate some subgroups
in the alternating group case. The case where H is & maximal subgroup
of A, was considered in [8]. Most of this work was started and is
included in the author’s dissertation [2].

We will prove the following main theorem.

THEOREM 1. Let H be a subgroup of A,, n > 18, and 1 a set
of points on which H acts. Assumne that the permutation character
(1g)? is multiplicity-free. Then one of the following holds:

(1) n =2k and Ay x Ay C H < (Sk1S2) N Ay,

(2) n =2k and H C (821 Sk) ™ Agi of index ar most two,

(3) n=2k+1, H fixes a point of §), and is one of the two groups

in (1) or (2) on the rest of 2,

(4) A x Apox € H C (Sk x 8,—k) N A, for scome integer k with

0<k<n/2,

(5) Fio x A5 C H C (Fap x S,_5) N A, where Fig and Fyy are

Frobenius groups of orders 10 and 20, respectively,
(6) PSL(2,5) x A,,_¢ C H C (PGL(2,5) x S, )N A,, or
(7) PT'L(2,8) x A, g C H C (PIL(2,8) x S,,. g) N A,,.

REMARK. The restriction n > 18 is not strict'y necessary, but is
imposed to allow more generality. For small n, individual arguments
can be used (see for instance [8]). The rest of the paper is devoted to
the proof of Theorem 1.

2. Preliminaries

From this point on, we will assume that the permutation charac-
ter (15)% is multiplicity-free, and H < A,, acting on a set  of n
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elements, where n > 18. We fix these assumptions, unless otherwise in-
dicated. For convenience, H will be called a multiplicity-free subgroup.
The following lemmas are key tools in the proof.

LEMMA 2.1. Let §2(xy denote the set of k-element subsets of Q, with
0<k<n/2andn>4. Then

(1) |orb(H,Qxy)| < k + 1, and

(2) lorb(H, Q)| < k, if H is transitive on {1,

Proof. These are essentially the observations in [10, p.341] and Pra-
eger [8, p.5] adapted to the present case. O

For any group G, the multiplicity-free condition on a subgroup H
gives an immediate bound on the order of H; for if 7 = (15)%, then:

n(1) =[G H < > x(1):=4d(G).

vElrr(G)

If G = A,, we have the following.

LEMMA 2.2. Let a be an integer with 1 < a <. n/2. Then we have:
|H| > (n +2)"'ming2%al(n — 2a)!.

Proof. From the character theory of the alternating groups [7, Sec.
2.5], we have d(A,) = 3[d(Sn) - 3 x(1)], where the sum runs over
all self-associated characters of S,,. Hence [4, : H] < d(A4,) < d(S,).
The character degree sum d(S,) can then be computed explicitly, as
shown by Saxl in [10]. O

The next bounds are weaker but allows us to avoid the computations
required by Lemma 2.2. They will be useful in later arguments.

LEMMA 2.3. Let n > 18, and [z] be the integer part of x. Then
(1) |H| > [n/2]!, and
(2) [H| > 2(kY), if n = 2k.

Proof. We show that (n+2)"12%!(n — 2a)! > [n/2]! for all integers
a with 1 < a < n/2, and then apply Lemma 2.2. This can be verified
in a straightforward (but tedious) manner. The bound in case (2) is
done similarly. We omit the computations. O
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We now carry out the proof of the main theorem, according as H
is primitive (Section 3), transitive but not primitive (Section 4), or
intransitive (Section 5). Basic facts on finite groups and their repre-
sentations can be found in [1], [6] and [7].

3. The primitive case

LEMMA 3.1. (Praeger-Saxl, [9]) If G is a primitive group of degree
n not containing A,,, then |G| < 4".

LEMMA 3.2. (Liebeck-Praeger-Saxl, [8]) Let H be a multiplicity-
free maximal subgroup of S, or A,, which is primitive on ). Then H
is doubly transitive on ) provided n > 6.

We can now prove the result for this case.

PROPOSITION 3.3. Let G be primitive on Q, where G < A,,, n > 18.
Then (1¢)4" is not multiplicity-free.

Proof. Tt is enough to prove the statement for -he case where (7 is
maximal in A,; for if (1¢)4" is not multiplicity-free, then no subgroup
of G is multiplicity-free either.

Suppose that G is a multiplicity-free maximal subgroup of A,,, prim-
itive on Q. Then from Lemma 2.2 and Lemma 3.1 we have

(n+2) 'min,2%!(n — 2a)! < |G| < 4", a € 1,n/2].

As in [9], this forces n < 60. (A computer check actually shows n <
55.) Hence by Lemma 3.2, we need to check which doubly-transitive
subgroups of A,, n < 55 are multiplicity-free. For cach such subgroup
G, it is shown in [8] that the inequality [4, : G] < d(A,) is satisified
only if n < 12. Hence for n > 18, nc primitive subgroup is multiplicity-
free. This proves the proposition. 0

4. H is transitive but not primitive

In this section we assume that H is a multiplicity-free subgroup of
A, which is transitive but not primitive on ), where 2] = n, and
n > 18. Then €} decomposes as a disjoint union of 5 non-trivial blocks
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of size a each, where a and b are integers with n = ab. Hence H C
(SalSp)NA,, withn = ab. (S5, denotes the ordinary wreath product
of the symmetric groups.)

Using Lemma 2.1, it is easy to obtain the next result which shows
that the values of @ and b are restricted if H is nultiplicity-free. This
was observed in [8], with a proof given in [10].

LEMMA 4.1. (Liebeck-Praeger-Saxl, [8]) Let H be transitive but
not primitive on {1. Then n = 2k, for some integer k, and one of the
following holds:

(1) H has 2 blocks of size k, or
(2) H has k blocks of size 2.

We will discuss the possibilities given in Lemma 4.1 separately. Be-
fore doing so, we need the following concept. A permutation group G
on a set {) of n elements, is called k-homogeneous if G permutes the
set {4y of all k-element subsets of § transitivelv.

We list some results on k-honiogeneous groups which will be used
later. These theorems are all collected in [4, XII§ 6, pp. 366-376].

LeMMA 4.2, (Livingston-Wagner [4]) Let G be k-homogeneous of
degree n. Then (i) if 2k < n, then G is (k — 1,-homogeneous; (ii) if
4 < 2k < n, then G is (k — 1)-transitive; and (iii: if 10 < 2k < n, then
G is k-transitive.

LEMMA 4.3. (Beaumont and Peterson [4]) Suppose that i is a per-
mutation group of degree n and is k-homogeneous for allk = 1,... . n.
Then one of the following holds: (i) G = A,, or S,, (ii) n = 5, G is the
Frobenius group of order 20, (iii) n = 6, G = PGL(2.5), or (iv)n =9,
G = PGL(2,8) or PT'L(2,8).

LEMMA 4.4. (Wielandt [4]) Let k > 2 and G be a k-homogeneous
group of degree n. Suppose that k + p® — 1 < n for any prime power
divisor p® of k. Then G is (k — 1)-homogeneous.

Lemma 4.5. (Kantor [4]) If (/ is a k-homogeneous group which is
not 4-transitive, then G is one of PGL(2,8), PT..(2,8), or PTL(2,32)
in its natural representation.

We will also use the facts that the only 4-'ransitive groups are
Sn(n > 4), An(n > 6), and the Mathieu groups M;,, M2, Mos,
and My, If £ > 6, S and Ay are the only k-transitive groups.
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We can now discuss the first case of Lemma 4.1

Case (1): H has 2 blocks of size k

We assume in this discussion the following. H is a multiplicity-free
subgroup of Ay, 2k > 18. The set 2 decomposes as = A UT and
{A,T'} is a complete set of imprimitivity, with |A| = |T'| = k.

The action of H on 2 induces a permutation group on A (as well
as on I'). The elements either fix A or send A to I. The set Hp
of elements which leave A setwise invariant (and hence I' as well) is
a normal subgroup of index two in H. The pointwise stabilizer Ha
of A is a normal subgroup of Hy. The factor group Hy/Hp is the
permutation group on A induced from H. The groups Hr and Hy/Hyp
are defined similarly.

Since H is transitive, Hx and Hr are conjugate in H, i.e., there is
an element which interchanges A and I'. Hence || = |Hr|. Next,
since ) is the disjoint union of A and I', any element which fixes
both A and T' pointwise must fix the whole of () pointwise. Thus
Ha N Hy = {1}. From the correspondence theorem, we have that
HaHp/HA < Ho/Ha. Also, note that Hr = Hp Ap/Hpa. The same
remarks hold if we interchange the roles of A and 1"

LEMMA 4.6. Let k > 10. Then each of Hy/ Ha and Hy/Hy is either
Sk or Ayg.

Proof. We divide the analysis into several cases, depending on k.
The notation {1%,27} denotes a subset of Qqx) with i elements from A
and 7 elements from T.

Case (1): Let k > 20. Consider Qq10y- Then 6; = {1'°}, 6, =
{192}, 05 = {18,2?}, 6, = {17,2%}, 65 = {15,2%} and 6 = {15,25}
are in distinct orbits of H. Consider 6,,6,05.6., and 85. One of
these sets must be an H-orbit, otherwise if all split, together with 8,
we get at least 11 orbits on {19y, which contradicts Lemma 2.1(2).
Hence if one of #1,0;,605.04, or 65 is an orbit, then the permutation
group Ho/Ha on A is either 10, 9, &, 7, or 6-homogeneous. By Lemma
4.2(iii), Ho/Ha is 6-transitive, and must be either Sy or Ay.

Case (ii): 13 < k < 20: Consider Qgy. Ther 6; = {1°}, 6, =
{152}, 63 = {1%,2%}, and 64 = {1%,2%} are in different orbits. Con-
sider #;,02 and f3. As in the previous case, one of these sets must
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remain an orbit (otherwise, including 64, we get at least 7 orbits, which
is a contradiction). Thus Ho/Hpa is either 6, 5, or 4-homogeneous. In
any case, it is at least 4-homogeneous. A 4-homogeneous group which
is not 4-transitive must have degree 9 or 33, by Lemma 4.5 (Kantor’s
result). Since 13 < k < 20, we find that Hy/Ha must be 4-transitive,
and hence is either S;. or Ag.

Case (iii): & = 12: From the analysis above, we find that Hy/HAa
is 4-homogeneous, and again must be 4-transitive. So Hg/Ha ei-
ther contains Ay or Hy/Ha = Mjs, the Mathieu group on 12 let-
ters. In the former case we are done. In the latter, we get |H| <
2|A112|2 = 18,065,520,320. We show that this gives a contradic-
tion. For if H were a multiplicity-free subgroap of Ay, it should
satisfy: [A2q @ H] < d(Azq) = 3[d(S24) + 3 x(1)], the sum over
all the 11 self-associated irreducible characters of Syy. The terms
can be computed by hand using the Hook Fornula [7, p. 56], and
we obtain [Ayg : H] < 8,836,179,426,416. Solving for H, we get
H > 35,108,400,000. This rules out the Mathieu group. Note that
the bound of Lemma 2.2 does not rule out this possibility.

Case (iv): k = 11: Asin the previous case, we find that Hy/Ha must
be 4-transitive. Hence Hy/Ha mwst either contain Ay or Hy/Ha =
M. the Mathieu group on 11 letters. Hence [H| < 2|M;;]?. But
2|M )% < 2%11111}1&2“(1,!(22 —~ 2a)!, 1 € [1,11], cont-adicting Lemma 2.2.
(The minimum is attained at ¢ = 9.)

Case (v): k = 10: Considering {24}, we find again that Hy/Hx is 4-
homogeneous. Using Kantor’s result, the only pcssibilities for Ho/Ha
are Syg or Ajg as asserted.

The same arguments hold for Hy/Hyp. This completes the proof of
the lemma. U

PROPOSITION 4.7. Suppose that H has two blocks, each of size k,
where k > 10. Then: Ay x Ax C H C (Sk 152) N Agy.

Proof. The inclusion H C (S, 1.52) N Agy is trivial. We show the
other. From the previous lemma, we know that Hyp/Ha is either Sy
or Ar. Since Ay is simple (as k > 10), we havs either Hr 2 Aj or
Hr = {1}. In the former case, we get (since Ha 2 Ax also) that
H D Ha x Hpr D A x Ag, and we are done. In the second case, we
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have that Hr = Ha = {1}. But then Ho/Ha = Hy, so that Hy is
either Sy or Ay. Since [H : Ho| = 2, we get that |H| = 2|Hy| < 2(k!).
This contradicts Lemma 2.3(2).

Finally, it can be shown that the character f:lAkxAk)A“ s not
multiplicity-free (see [3]), which gives the strict inclusion in the propo-
sition and completes the proof. O

We now consider the second case of Lemma 4.1

Case (2): H has k blocks of size 2

We now consider the case where H is a multiplicity-free subgroup
of Agp with k blocks of size 2.

Let {Ay,...,Ag} be the set of blocks, with |A;] = 2, 1 < i < k.
Let K = {k € H|(A;)* = A, for eachi}, the subgroup of H leaving
each block invariant. The action of H induces a permutation group
H/K which acts on the blocks A . Let A, = {ag, Bi}, 1 <4 <k,
and let Ko = ((a1,81).... . (a, 3.)) be the group generated by the
k involutions (a;,5;). Ky consiste of elements which fix each block
setwise. Then |Ky| = 2F, Ky is & direct product of k copies of the
cyclic group of order 2, and K C k.

LEMMA 4.8. Let k > 10. Then H/K is either Ay or Sy.

Proof. As in the proof of Lemma 4.6, we use Lemma 2.1 with care.
Consider the set {3;6y. The sets 6, = {1% 22 32}, 6, = {12,22 3,4},
B3 = {1%,2,3,4,5}, and 64 = {1,2,3,4,5,6} (with the obvious nota-
tion) are in disjoint orbits of H. By Lemma 2.1(2), the number of
H-orbits on 26, is at most 6. Consider 65, 63, 64. Then necessarily, at
least one of the sets should remain an orbit. If 6, is an orbit, then H/K
is 4-homogeneous; an element of H/K which sends {12,22,3,4} to an-
other set of the form {h? 42, j, k} in the orbit sends < A}, Ay, A, Ay} to
{An, A Ay, A} Similarly, if 63 is an orbit, H/K is 5-homogeneous;
if 64 is an orbit, H/K is 6-homoger.cous.

The group H/K is a permutation group of degree k. By Wielandt's
theorem (Lemma 4.4), if H/K is 6-homogeneous, it is 5-homogeneous.
By Livingston-Wagner (Lemma 4.2(1)), if it is 5-homogeneous, then it
1s 4-homogeneous. In any case, H/K is 4-homogeneous. If the degree
k satisfies 10 < k < 19, by Kantor’s result, all 4-homogeneous groups
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are 4-transitive. Hence H/K is either Sy, Ax, M1 or Ms. We show
that it is not M, or M,;.

Suppose H/Kr = ]\/[12. Then (Hl = |M12'IK| < |M12I212 =11-5-
33 .28 since |K| < 2'2. But by Lemma 2.3(2) (H| > 2(12!) = 11-7-
52.35. 211 A comparison shows that this leads to a contradiction. In
the same way we find that H/K cannot equal M,;. Hence H/K O A
for 10 < k < 19.

Now let k > 20. Considering the orbits of H o1 {2¢,¢; and using sim-
ilar arguments as before, we see that H/K is at least 6-homogeneous.
By Livingston-Wagner (Lemma 4.2(iii)), H/K is 6-transitive, and thus
is either symmetric or alternating.

Thus for all cases considered, H/K 2 A, as claimed. g

LEMMA 4.9. |K| > 2k-1,

Proof. View Ky as the natural permutation module of the group
Ag over the finite field GF(2). Since K C Ky, K is a submodule of
Ky. From the preceding lemma, H/K C Si. Thus |H||K|™! < k!
So, |K| > [H|/k!. By Lemma 2.3(2), we know |H| > 2(k!). Hence,
|K| > 2(k!)/k! = 2. This shows that K is a non-trivial submodule.
Hence, using the structure of the natural module [1, p.50 and 74], we
have either K = Ky or K is the core. In any case, [Kp : K] < 2. Since
|Ko| = 2%, we have |K| > 2%~ 1, O

We now have our result for ths case.

ProrosiTioN 4.10. Suppose that H has k blocks, each of size two,
where k > 10. Then H is a subgroup of (S3 1 Sx) N Agx of index at
most two.

Proof. The inclusion is immediate. Since |(S2Sk) N Agx| = 257 1k!,
we have 281kl = [(S2 0 Sk) N Aoy : H][H : K][K : {1}]. from which we
get the result, since H/K 2 Ay and |K| > 25! trom the two previous
lemmas. a

5. H is intransitive

In this section we assume that H is a multiplicity-free subgroup of
A, acting intransitively on a set {2 of n-elements.
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From Lemma 2.1(1) the number of orbits of H on oy = Qs
at most two. Since H is intransitive, this number is exactly two, by
Lemma 2.1(2). Let I' and A be the two orbits. and take I' to be
the smaller orbit with size |I'| = & < n/2. The action of H induces
an action on I'. Let Hr be the pointwise stabilizer of H on I". Then
H' = H/Hp is the permutation group on I' induced from H. Similarly,
H2 = H/Hp is the group induced on A. We fix these notations for
the rest of the section. The key step in the analysis of this section is
the determination of the groups H', H® Hp, Hx.

LEMMA 5.1. Foreacht <k, H" and H® are t homogeneous. Fur-
thermore, H" is one of the following: Sk, Ay, PGL(2,5), PTL(2.8), or
PGL(2,8).

Proof. For each integer t with ] <t < n/2, consider the action of
H on 4y, We see that the £ + 1 sets: {11}, {1*=1,2}, {112 22} ... |
{1,271}, and {2!} are in distinct orbits of H on Qey. (As before
{17,2’} means a set with i elements from A and _ elements from r)
By Lemma 2.1(1), these are all the orbits of H on {!{+y- Hence for each
t,1 <t <k, the groups H' and H* are t-homogeneous, since the sets
{1} and {2'} are orbits. This proves the first statement.

Since H' is a permutation group of degree k such that H' is -
homogeneous for all ¢, ¢ < k, by Beaumont and Peterson’s classification
(Lemma 4.3), the possibilities for H' are determined. This completes
the proof. O

LEMMA 5.2. Hp # {1}

Proof. Suppose that Hr = {1}. Then H' = H/Hy = H/{1} 2 H.
Hence |H| = |H"| < k! < [n/2]!, since H® — S,. But by Lemma
2.3(1), [H| > [n/2]!. This contradiction shows that Hp # {1}. O

We now state and prove our result for the intransitive case.

PROPOSITION 5.3. Let H be intransitive on ). Then H is one of
the groups in cases (3), (4), (5), (6), or (7) of the main theorem.

Proof. As before, let T" and A be the two orbits of H, with T =
k <n/2. Via the natural embedding,

H=H/(Hr VHA) — H/Hp x H/Ha = A" x H?,
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we obtain the inclusion H C H" x H®. Since H' and H? are per-
mutation groups of degrees k and n — k respectively, we have that
H C HY x HA C Sy x S,_4. Since H C A,,. we further have the
following inclusions:

HC(H" x H)T C(Sp x HY C (S x Sn_i) .

where Gt denotes the subgroup of index two of all even permutations
of a group G (ie Gt =GN A,).

Define the map f : (Sk X Sn_ )" — Sn—x which sends (o, 7) — 7.
Then f is a homomorphism of Sy x S,_x)* onto S,  with kernel
Aj x {1}. Similarly, the map 4 : (Sy x H®)* — H? which maps
(g,7) — 7T is a surjective homomorphism with kernel A, x {1} also.

By transitivity of induction, we have

N ’
(1) = [{(1g) S HD T SkxSui) ™A

= [{L(sxa)+
) }(Sk XSn_)t Foo.. }A.,, )

4. }(Ska‘_.k)WAn

- [{1(Ska’\

Since (1g)4» is multiplicity-free by assumption, the permutation char-
acter {l(styA)+-}(S"XS’l—"’)+
Let T = {t#;} be a complete set of representatives of the cosets of
HA in S,,_r. We can identify 7 with the set of coset representatives
of (Sk X HA)+ mn (Sk X Sn—k)_*- via t; (1,1‘71).
The group (Sk X S,_kx)T acts on the cosets of (S, x H®)? with
trivial action on the first factor, i.e., if (p,0) € (S X Sn—x)T, then

must be multiplicity-free also.

(Se x H)T(1,t)(p,0) == Skp x H3;0 = S x H 0.

Hence the (Sy x S,_r)t-module affording the permutation charac-
ter {1(SkaA)+}(SkXS"'k)+ is inflated via the earlier defined epimor-
phism f from the S, _j-module affording the character (1ga)%-*.
Consequently, since {1<Skx1;A)+}(S*XS”‘*‘)+ is multiplicity-free, then
(1ga)®=—* is also multiplicity-free. Hence H? is a multiplicity-free
subgroup of S, _x and we can apply Saxl’s theorem ([10, p. 340]) to
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classify H®. Let |A] = n —k = m. Then we have the following
possibilities for H2:

(1) Amt x Ay CHAC Sy » 5, 0<t<ml2,
(i) m =2t and A; x A, C H® C 8,1 S,,
(¢43) m =2t and H® C S50 S; of index at most four,
(iv) mis odd and H® fixes a point of A and is one of the groups in
(ii) and (iii) on the rest of A,
(V) Am-t X Gy C HA C S;n_y > Gy, where t is 5,6, or 9, and G, is
Fyy, PGL(2,5), and PTL(2.8) respectively.

Since H* is transitive on A, the intransitive cases (7v) and (v) are
immediately excluded. Case (i) is possible only if + = 0; in this case,
we have A, _;, C H® C S,,_.. We discuss this case and the remaining
possibilities, i.e., (41) and (ii%) in the next step of the proof.

Case I: An—-k C f[A g Sn,,ki

Recall that H and Hy are normal subgroups of H with HAaNHr =
{1}. Hence HaHp < H, and HpHy/Ha < H/Hpa = H® by the
correspondence theorem. From Lemma 5.2, we know that Hr # {1}.
Hence Ha Hy strictly contains Ha. Since H2 is & subgroup of S,,_
containing A, _, HaHy/Hp is either S,,_ or A, _4 (since n — k >
n/2 > 10). In any case, we get HaHy/Ha O A,_i. From the 2nd
Isomorphism Theorem, we have Hy = Hp/{1} = HaHpr/Ha D A, .
ThllS, H['* ;)_ An~-—k~

We next determine Ha. Since H/Ha C S,_; and HaHr/Ha D
An—k, we see that [H/Hax : HanHr/Ha)] < 2. By the 3rd Isomor-
phism Theorem, we have (H/Ha)/(HaHr/Ha) 2 H/HxaHyp. Sim-
ilarly, (H/Hy)/(HaHr/Hr) © H/HaHyp This shows that [H/Hyp
HAHr/Hy] < 2 also. Since Hy = HaHp/Hp and HY = H/Hrp, we
have [H' : Ha] < 2 (abusing notation). Hence to determine Ha, we
only need to determine the normal subgroups of H' of index at most
two.

From Lemma 5.1, H' can be one of the following groups: Sy, Ay,
Fao, PGL(2,5), or PT'L(2,8).

Suppose that H' = S, or A;. Then Hp is either Sk or Ag. In any
case, Hao D Ag.

Let H' = Fyg. In this case the degree k = 5. The Frobenius group
of order 5 has a normal subgroup of index two which is the product of
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a Frobenius kernel of order 5 and a cyclic group of order 2. We denote
this by F1p. Hence Ha D Fyp.

Next, let HI' = PGL(2,5). Here k = 6. PSL(2,5) is a normal
subgroup of index two. Hence Hy 2 PSL(2,5).

Finally, PI'L(2, 8), the projective semi-linear group of degree 9, has
no subgroup of index two. Hence. Hp = PI'L(2,8).

Since Ha and Hr commute (Ha NHr = {1}), we have the following
inclusions:

Ha x Hr C H C (H" x H®)*.

Substituting the information on A" and Ha we obtained above, and
the fact that for this case H® C S,,_; and Hr D A, _i, we obtain cases
(4), (5), (6), and (7) of the main theorem. Note ihat the statement of
Case (4) includes k = 0 since (14,)%" is clearly multiplicity-free.

We now consider the remaining two possibilities for H® (cases (i)
and (i42) in our earlier discussion). We will discuss them in a single
case below.

Case II. H® C S, 1S, or S21S,.

Suppose first that the other orbit I' has more than one element.
Then |I'| > 1 and so |A| =n — k > 1 also, since & < n/2. By Lemma
2.1(1), the number of orbits of H on (2} is at most three. The sets
{12} and {22}, consisting of pairs of unordered points of A and T,
respectively, as well the sets {1,2} consisting of a point each from A
and [' are in disjoint orbits. Hence these are exactly the three orbits
of H on §(3y. In particular, since {1} is an orbit, the group H® is
2-homogeneous on A. It is well known that this implies that H2 is
primitive on A. However, this contradicts the assumption that H2
is contained in one of the imprimitive groups S; 1 Sy or S5 S;. The
contradiction arises from our assnmption that ' contains more than
one element. Hence |I'| = 1.

Thus for Case II, the group H is the stabilizer of one point, the
degree of () is odd, and on the rest of Q, H is one of the groups
obtained in Section 4 of this paper. This is precisely the statement of
Case (3) in our main theorem.

This completes the proof of Proposition 5.3 and gives the result for
the intransitive case. d
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6. Conclusion

We now collect the results of Sections 3, 4, and 5 and give a summary
of the proof of our main theorem.

Proof of Theorem 1. Proposition 3.3 shows that no primitive sub-
group is multiplicity-free. Propositions 4.7 and 4.10 give the results for
the transitive but imprimitive case, i.e. cases (1) and (2) of the main
theorem. Finally, the intransitive case is given bv cases (3), (4), (5),
(6), and (7) which we obtain in Proposition 5.3. O
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