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LOW TYPE PSEUDO-RIEMANNIAN SUBMANIFOLDS
YounG Ho Kim

ABSTRACT. We study low type submanifolds in pseudo-Euclidean
space which is especially of 2-type pseudo-umbilical. We also deter-
mine full null 2-type surfaces with parallel mean curvature vector
in 4-dimensional Minkowski space-time.

1. Introduction

The general notion of finite type submanifolds of Fuclidean space
was introduced by B.-Y. Chen about ten years ago ([1]). Later on,
he extended this notion to a pseudo-Riemannian version ([2], [3]) as
follows: Let E™*! be an (m + 1)-dimensional pseudo-Euclidean space
with metric tensor given by

s m+1
~ 2
g=—) drj+ E dz?,
i=1 i=s+1
where (x1,T2, - ,Tm41) is a Cartesian coordinate system of ET**!.

Let M be a connected n-dimensional pseudo-Riemannian submanifold
of E™*+! with signature (r,n — r). Then we have the Laplacian A of
M acting on the space of smooth functions defined on M. M is said to
be of k-type if the position vector = of M in E™*! can be decomposed
in the following way

(11) T=To+ X, + -+, ACEij :lija:i,-,lil < --- <l,’k
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for some natural number k, where 7 is a constant map and x; L T
are non-constant maps. A k-type submanifold is said to be of null k-
typeifoneof I; . --- ,1;, is zero. Since it is well known that Ar = —nH
where H is the mean curvature vector of M in E™ %! the submanifold
M is of null 1-type if and only if M is minimal in E™+1.

We now introduce typical pseudo-Riemannian manifolds. Let ¢ be
a point in E™*! and r > 0. We put

S;n(cvr) = {T S E;n_”Ka: —-c,z—C¢)= ’I"2},

HI'\(er) = {a € E7 (o — ¢,z — ¢) = —r%)

where (,) denotes the indefinite scalar product on ET. It is well
known that S7*(ec,r) and H]" |(c,r) are complete pseudo-Riemannian
manifolds with constant sectional curvatures ;15 and —;lg respectively.
Such S7*(c,r) and H" (c,r) are respectively called the pseudo-Riem-
annian sphere and the pseudo-hyperbolic space and ¢ is called the
center. B.-Y. Chen ([2]) classified 1-type submanifolds of pseudo-
Euclidean space E™1.

In this article, we study 2-type pseudo-umbilical pseudo-Riemannian
submanifolds of E**! and null 2-type surfaces with unit parallel mean
curvature vector. Throughout this paper, submanifolds of pseudo-
Euclidean space are always assumed to be pseudo-Riemannian.

2. Preliminaries

Let M be a submanifold of a pseudo-Euclidean space E™*! with
indefinite scalar product (,). Let X be a vector in E™*1. X is called
spacelike if (X, X) > 0 (respectively, timelike or null if (X, X) < 0
or (X, X) =0and X # 0 ). We denote by A h,V,D and V the
Weingarten map, the second fundamental form, the Levi-Civita con-
nection of M, the normal connection and the Levi-Civita conection of
ET*! | respectively. A submanifold M is said to be pseudo-umbilical
if Ay = pI for some smooth function p on M and (H, H) # 0. For the
second fundamental form h, we define its covariant derivative, denoted
by Vh, as follows :

(2.1) (Vxh)(Y,Z) = Dxh(Y, Z) = h(VxY,Z) ~ h(Y,Vx Z)
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for vector fields X,Y and Z tangent to M.
Let ej,e2,- - ,e, be an orthonormal basis of the tangent bundle

TM. If ¢ is an endomorphism of T, M, then the trace of ¢ is defined
by

n
(2.2) tT¢:Zei<¢ei,ei>, € = {e;,e;, =+1.
Thus, the mean curvature vector H of M is given by

DI

Let ept1,€nt2, - ,em+1 be an orthonorma: normal basis of the
normal bundle T+ M. B.-Y. Chen ([3]) gave the formula for AH:

(2.3) H= —trh =

3|r-—*

(2.4) AH = APH + g grad(H, HY + 2'rApy

m+1

+ Z frtr(AHAer)er,

r=n+1

where AP denotes the Laplacian of the normal bundle given by AP =
— >0 €(De,De, — Dy, ;) and A, stands for the shape operator as-
sociated with e,. Let w” be the dual 1-form of e4 (A =1,2,--- ,m+1)

defined by w*(X) = €4{ea, X). The connection forms w¥ are defined
by

(2.5) des = waeB, wf + eAeng = 0.

Then, the structure equations of E™*! are obtained as follows:

m+1

(2.6) dw? = Z wB AW,

B=1

141

(2.7) dwpy = Z WS Awd.
=1
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We now define the curvature forms Q; and f on M :
i 1 % s 1
Q] = _iZRjklwk/\wl’ Qt = 52.}%}?}(.1&),‘:/\&)1,
k.l k.l
where R!,, = €;(R(ex, e1)e;, e;) and
(2.8) R =« Z(hgkhfl — hiih3)

with h{; = (h(e;, e;),e;) where i,5,k,1 € {1,2,--- ,n} and t,s € {n+
1,---,m + 1}. The equation (2.8) is called the equation of Ricci. We
then have the structure equations for M

(2.9) dw® = ij A w;-, w;- + ejeiwf =0,
j=1
(2.10) dw’ :wa/\wi+ﬂ§,
k=1
m+1
(2.11) dof = Y wi Awl+ Q5.
u=n+1

Fore later uses, we introduce some examples of null 2-type.

ExaMPLE 1 ([ 5 ]). Let f: E} — R be a real function defined by

f(mv Y, Z) = ——611.2 + y2 + 62227

where 6; and d, belong to the set {(),1} and they do not vanish at the
same time. Taking r > 0 and € = =+1, the set f~!(er?) is a surface
in E} provided that (61,682,€) # (0,1,—1). Then, the unit normal
vector is given by 1(8;x,y,622) and the principal curvatures are easily
derived as —%’- and —%2. According to the choice of numbers 0, 1 and
-1 for 61,62 and ¢, we have several examples of null 2-type surfaces :
E} x 8(r) for (61,682,€) = (0,1,1), Rx H'(r) for (§.,6,,€) = (1,0, —1)
and S} x R for (61,62,€) = (1,0,1).
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EXAMPLE 2 (B-scrOLL IN E¥, [ 6 ]). Let vis) be a null curve in
Minkowski 3-space E} with Cartan frame {A, B,C}, that is, A, B,C
are vector fields along +(s) satisfving the following :

(A, A) = (B,B) =0, (A, B)=—1,
(A,C) = (B,C) =0, (C,C)=1,

and

T =A,

A =k(s)C,

B = a¢C, agbeing a nonzero constant,

C = apA + k(s)B.
If we consider an immersion x(s.t) = x(s) + tB(s), then = defines a
Lorentz surface called a B-scroll. In this surface, we can have the unit
normal vector field N = —aptB(s) — C(s) and the mean curvature vec-
tor H = aoN. It is a null 2-type surface in €} with minimal polynomial
(x — ap)?.

ExAMPLE 3 (EXTENDED B-SCROLL IN Ef). Let v be a null curve
in E{ and let A(s), B(s),C(s), D(s) be a Cartan frame along v such
that

(A,A) =(B,B) =0, (A, B) == -1,

(A,C)=(A,D) = (B,C)=(B,D) =0,
(C,C)=(D,Dy=1, (C,D)=0, (s)=As).

Let X (s) be the matrix of (A(s) B(s) C(s) D(s)) consisting of
column vectors of A, B,C, D with respect to standard coordinates of
E}. Then, X(s) satisfies

X'(s)EX(s) = T(s),
where E = diag(—1,1,1,1) and

0 -1 0 0
1 0 0 0

=19 0o 10
0 0 0 1
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where X*(s) denotes the transpose of X (s).
We now consider a system of ordinary differential equations :
A(s) = k1 (8)A(s) — ko (s)C(s) — ks(s)D(s),
B(s) = —k1(s)B(s) — aC(s),
C(s) = —aA(s) — ko(s)B(s),
D(s) = —ks(s)B(s),

where k1 (s), k2(s) and k3(s) are smooth functions and a is a constant.
In other words, we may write

X(s) = X(s)M(s),

where (o) 0 Y 0
M(s) = —kg(s) mk—lfgs) _ké(s) —kg(S)
—ks(s) 0 0 0

For a given X(0) = (A(0) B(0) C(0) D(0))satisfying X*(0)EX(0)
= T, or, equivalently X(0)7X*(0) = E, there is & unique solution to
above matrix equation with initial condition X((}). Since T is sym-
metric and MT is skew-symmetric, % (X (s)TX(s)) = 0 and hence

’ ds
X (s)TX'(s) = E which is equivalent to

X' (s)EX(s) =T.

Therefore, A(s), B(s),C(s), D(s) form the null frame along a null curve
v in Ef.

Let z(s,t) = y(s) + tB(s). Then, it defines a Lorentz surface M in
Ej}. The mean curvature vector field H is given by

H(s,t) = —ta*B(s) + aC(s),

which implies
AH = 24°H.

If @ # 0, then we can easily see that M is of null 2-type. And, the
shape operator Ay associated with the mean curvature vector field H

has the form
a? 0
aks a®

in the coordinate frame {z,,z;}.
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3. 2-type pseudo-umbilical submanifolds
In this section we deal with 2-type pseudo-umbilical submanifolds
of Em*+1. First of all, if we follow the similar argumetnt in [ 7 |, we
have
LEMMA 3.1 ([ 7 ]). Let M be a pseudo-umbilical submanifold of
E™*Y. Then we have
(1) 3, etr(AgA,)e, = nea’H,
(2) trApy = %2grad(H, H),
where € = sgn{H, H) and o = |{H, H)|z.
LEMMA 3.2. Let M be an n-dimensional pseudo-umbilical subman-

ifold of E+1. Then, (AH)T vanishes if and only if the mean curvature
is constant or n = 4, where (AH)T denotes the tangential component

of AH.
Proof. By Lemma 3.1, (2.4) can be reduced to

- ngr(Ld(H, H).

AH = APH + nea®H +

Thus, (AH)T = %ﬂgmd(H, H) which gives the lemma. O

LEMMA 3.3. Let M be an n-dimensional submanifold of ET**t. If
M is of 2-type, then (AH)T vanishes if and onlv if one of the following

occurs
(a) M lies in a pseudo-Riemannian sphere, a pseudo-hyperbolic space

or a null cone.
(b) M is of null 2-type.

Proof. Since M is of 2-type, the position vector = of M can be
decomposed into

(3.1) T=T0+Tp+Tq Axp=Azy, Azg = px,
for some constants A and p. Then we have

(3.2) A%z + bAr +c(z —10) =0
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where b = —(A + p) and ¢ = Ap. Since Az = -nH, (3.2) can be
rewritten as

(3.3)
APH + ggra,d<H, H) +2trApi + 3 _ertr(AnAc, e,

= —bH + S(T — Tp).
n

Therefore, (AH)? vanishes if and only if ¢ = 0 or r — zp is normal to
M. If c =0, M is of null 2-type. Suppose x — z¢ is normal to M. Let
X be a vector field tangent to M. Then,

X(x —xo,x —x20) = (X, 2 —x0) =0,

that is, (z—z¢,x—1z0) is constant. Thus, M lies in a pseudo-Riemannian
sphere, a pseudo-hyperbolic space or a null cone depending upon (z —
To, T — Tg) > 0, < 0 or equals zero. O

THEOREM 3.4. Let M be an n(# 4)-dimensional 2-type pseudo-
umbilical submanifold of E™*1. Then, M has constant mean curvature
if and only if one of the following holds:

(a) M lies in a pseudo-Riemannian sphere, a pseudo-hyperbolic space
or a null cone.
(b) M is of null 2-type.

Proof. If M has a constant mean curvature, then Lemma 3.2 and
Lemma 3.3 give (a) or (b). Conversely, if (a) or (b) holds, then (AH)T
vanishes if we take account of (3.3). Then, Lemma 3.2 implies that the
mean curvature is constant. O

THEOREM 3.5. Let M be a 4-dimensional 2-type pseudo-umbilical
submanifold of EJ**'. Then, (a) or (b) described in Theorem 3.4 holds.

Proof. By Lemma 3.2, (AH)T always vanishes. If we make use
of (3.3) and the argument developed in Lemma 3.3, we obtain the
theorem. UJ
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4. Null 2-type surfaces with unit parallel mean curvature
vector

A surface M of pseudo-Euclidean space E™ ! is said to have the
unit paralle]l mean curvature vector if the mean curvature vector H is
non-null and its normalized vector field is parallel in the normal bundle.
In this section we assume that the surface M of pseudo-Euclidean space
E™*! have the unit parallel mean curvature vector and is of null 2-type.
We choose a local adapted orthonormal frame e eq, €3, - , emq1 such
that H = aes. Then the last term of (2.4) can be rewritten as

m-+1

Z etr(Ag A )e, = Fg&tTA%Eg + aa(H)

r=3
where a(H ) stands for the allied mean curvature vector field of H de-
fined by a(H) = Z;”:tl e-tr(AzAr)e,. A submanifold in E™*! is called
Chen submanifold if the allied mean curvature vector field a(H) van-
ishes identically. As is well known we have the following proposition.

PROPOSITION 4.1 ([4]). Let M be a null 2-type submanifold of E™.
Then

(4.1) trVAy =trVAy +trdpy = 0

and

(4.2) APH 4+ e.h(Agei,e;) = \H
i=1

for some nonzero constant A\, where trVAy = 222:1 €,(Ve, Al )e;.

LEMMA 4.2. Let M be a surface of E™*! with unit parallel mean
curvature vector. If M is of null 2-type, then M is a Chen surface and
on the open subset U = {p € M|(Va)(p) # 0} we have

AsVa = —e3aVa

and
Aa = () — estrA?)a,

where Va stands for the gradient of a.
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Proof. Sine e3 is parallel in the normal bundle, (4.2) implies
(Aa)es + egatrAge;g + aa(H) = daes.

It follows that a(H) = 0 and thus M is a Chen surface. We also have
Aa = (A —estrA%)a. Since trApy = A3V, we obtain from (2.4) and
(4.1)

AsVa = -e3aVa

onl. O

LEMMA 4.3. Under the same hypothesis of Lemma 4.2, the mean
curvature vector field H is parallel in the normal bundle.

Proof. We choose a local orthonormal frame {e, ez, €3, - ,€m41}
of E;"“ such that e; and e; are tangent to M, es,- - - , €m,41 are normal
to M and H = aes. Suppose the open subset U = {p € M|(Va)(p) #
0} is not empty. By Lemma 4.2, we see that —e3a is a principal
curvature of Az on i/ and thus the other principal curvature is 3ez3a on
U.

If M is spacelike, we choose e; in the direction of Va on U. We
now show that Va cannot be null even if M is Lorentzian. Let M be
Lorentzian. Then, the Weingarten map Az has one of the following

forms ([ 9]
(5 5) (10) (50

for some functions Ay, Az, g, @ and b, where the first and the last rep-
resentations are induced by an orthonormal frame and the second one
is obtained by an pseudo-orthonormal frame {e;,e,} on M satisfying
(e1,e1) = {eg,e2) = 0, {e1,e2) = 1. Since one principal curvature of
M is —e3a, A3z cannot have the second and third forms. Hence, M is
diagonalizable on ¢/. Thus, we may assume that the unit vector field
e; tangent to M is parallel to Va on U if M is spacelike or Lorentzian.
Therefore, we may put

(4.3) wé = egaw!, w% = —3ezaw?,
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(4.4) da = (eya)w’.

Taking the exterior differentiation of the first equation of (4.3) and
making use of the structure equations, we obtain

m-+1
(4.5) dws =wiAwl+ Z w} Awl = —3ez0w? A wl = —3ezadw’.

r=4
If we use (4.4), we have
d(aw') = adw’.
The last two equations give
dw' =0.

1

By the Poincaré lemma, w" can be locally written as

(4.6) w' = du

where u is a smooth function. Similarly, by taking the exterior differ-
entiation of the second equaton of (4.3) and using De3z = 0, we may
get

200N (3e1)
(4‘7) Wi (62) - 4cv
We also have from (4.6)
(4.8) w% (e1) = 0.

On the other hand, we see from (4.4) and (4.6)
(4.9) do A du = 0.

Thus, « is a function of u, that is, @ = a(u). Therefore, (4.4) and (4.7)
give rise to

(4.10) da = o' (u)du, e1(a) =a'
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and

(4.11) 4owi = —3a'W?.

Taking the exterior differentiation of (4.11), we get
(4.12) 21(c/)? — 48¢1e3a® + 16620° K — 1200 =0

where K denotes the Gaussian curvature of M. Since H = aesz and M
is a Chen surface by Lemma 4.2, we have

trA, =0 and trAzA,.=0 (r=4,--- ,m+1).
It follows that
(4.13) WD, = hly =0

where we have put A, = (h;) for r =4,--- ,m+1.
On the other hand, the equation (2.8) of Ricci is rewritten as

(KN (X,Y)er ) = ([4r, A) X, Y)

for r,s = 3,4,---,m + 1, where K"V denotes the normal curvature
tensor field associated with the normal connection D and X,Y are
tangent vector fields to M. Since Deg = 0, we have from the last
equation

(4.14) [A3, A;] =0

for all r = 3,--- ,m + 1. If we make use of (4.3), (4.13) and (4.14),
then we obtain
hip =0

forr=4,--- ,m+1. Thus we have A, =0forr=:4,--- ;m+1 and

m+1
K =Y det(h},) = det(h};) = —30’.
3
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Consequently, (4.12) becomes
(4.15) 7(0’)? — 160 (e1¢3 + €2) — dae’ = 0.

Let y = (a/)?. Then the equation (4.15) is reduced to the following
ordinary differential equation of first order :

(4.16) Ty — 160 (e1e3 + €3) — 20y = 0,

where y’ stands for the derivative of y with respect to the variable a.
Then, the solution of this differential equation is given by

(417) y= ((1’/)2 = CO'J': — 16a4((163 + 62)

where C is a constant.
Lemma 4.2 and (4.3) imply

(4.18) Aa = (A - 10e30?)a.

On the other hand, if we use the definition of Aa together with (4.4),
(4.7) and (4.8), we can obtain

(4.19) dala = —dejaa” + 36, (a’)?.

Combining (4.18) and (4,19), we get

(4.20) deraa” - 3ey(a’)? + 402 (A — 10e50*) = 0.

Together with (4.15) and (4.20) we get

(4.21) e1(@)? + (A — 10e30?) — dera’ (€193 +€3) = 0.
Comparing (4.17) and (4.21), we can conclude that o is constant on
each component of & which is contrary to our assumption. Therefore,
the open subset U is empty and hence the mean curvature of M is

constant. Automatically, the mean curvature vector H is parallel in
the normal bundle. It completes the proof. 0

We now prove
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THEOREM 4.4. Let M be a surface of E}. If M is of null 2-type
with unit parallel mean curvature vector, then M is an open portion
of a B-scroll in E}, E} x S'(r), S}(r) x R, H'(r) x R or an extended
B-scroll in Ef.

Proof. Let M be Lorentzian in E}. As befor2, we choose one of
unit normal vector fields e3 as H = «es which is the mean curvature
vector field of M in E}. Suppose that the shape oparator Aj associated
with ej is diagonalizable. Thus, we may choose ar: orthonormal frame
{e1,€e2} so that

we(30) ae (4 3)

where A4 is the shape operator of M associated wizh the normal vector
field e4 orthogonal to e3. We obtain from the above Az and Ay

wi = — Bwl, wi = —yw?,

wi = —pw! —6? Wi = 6w
Since e3 is parallel, we have

(,8 - ’r’)(s = (.

Suppose that an open subset O = {p € M|(8 — v)(p) # 0} # ¢. Then,
§ =0 on O. Since M is of null 2-type, AH = AH for some real number
A # 0. That implies

=624 42 and u=0.

Consequently, Ay is identically zero on ©O. Thus, the reduction theorem
can be applied in such a way that O lies in E?. According to Theorm
3.1in [ 6], one of 8 and -y must be zero. Hence, each component of O
lies in E} x S*(r) or Si(r) x R for some constant r. By continuity, a
component C' of O must be M if C # ¢.

If © = ¢, that is, 8 = v = «, then M is psendo-umbilical in E}.
Since the mean curvature vector is parallel in the normal bundle, A
is minimal in a hypersphere Sj(c r) for some ¢ € E} and r > 0 due
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to B.-Y. Chen ([ 2 ]). Therefore, M is of 1-type and hence this case
cannot occur.

We now suppose that there is a point p € M such that As is not
diagonalizable at p. The, we can choose a pseudo-orthonormal frame
{A, B} on a neighborhood W of p so that As takes the form

(‘,ff O) k#0.

&

We put
_A+B o — A-B
vz e
Then, {e;,e2} is an orthonorma! frame on W. Az and A4 take the

form . . )
_(atz 3 _( B
Ay = ( il 52‘) and Ay = ( _ -ﬁ)

€1

in the frame {e;,e;} for some functions 3 and v on W. Since the
normal connection is flat, we may assume that 3 = .

Since V 4 B and V g A are parallel to B and A respectively, the equa-
tion of Codazzi

VB(A3A) — AsVpA =V 4(A3B) — A3V 4B

gives
kVpB = A3VpA —aVgA— B(k)B

which is parallel to B. Therefore. we have
VB =YVgB=fB

for some function f because of (43B, B) = (A43, B) = 0. Thus, the
integral curves of B are straight lines. Let ~(s) be an integral curve
of A and let C(s) = e3(y(s)) and D(s) = e4(v(s)). Since the normal
connection is flat, we get

A(s) = k1(s)A(s) - kC(s) — 28(s)D(s).

B(s) = —k1(3)B(s) — aC(s)
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C(s) = Vaes = —aA(s) — kB(s)

and

D(s) = V geq = —253(s)B(s).

Therefore, x(s, t) = v{s)+tB(s) is a parametrization of each connected
component of W which is an extended B-scroll in Ef.

For the space-like surface of null 2-type with unit parallel mean
curvature vector in Ef, M is given by an open porsion of H(r) x R if
we use the result of [ 5 |. It completes our proof. O

From this theorem, we have

THEOREM 4.5. The only full null 2-type surface with unit parallel
mean curvature vector in 4-dimensional Minkowski space-time is an
open portion of an extended B-scroll.
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