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COHOMOLOGY OF GROUPS
AND TRANSFER THEOREM

EunmMi CHol

ABSTRACT. In this paper, we study the dependence of corestric-
tion (or transfer) map on the choice of transversals. We also study
transfer theorems with respect to some commutarive subgroups.

1. Introduction

Representation theory of a finite group G strongly involves coho-
mology theory. There are three fundamental maps over cohomology
groups, such as restriction, inflation and corestriction (or called, trans-
fer). The first two maps were been studied in many places, the latter
one, however, still remains ackward. There are two ways to define the
corestriction; one is via abstract complexes and the other is cohomology
groups, and each of these implies the others. In both ways, transversal
sets are being used; however since the sets are not unique, calculations
involving transversal are very troublesome. For this reason, character-
theoretic corestriction which is a dual of ordinary corestriction has been
introduced [10]. But this shall not be our concern, so that transversals
are still key factor of the corestriction.

In this paper, we ask how corestriction maps depend on choices of
transversal. Since corestriction maps on cohomology groups are very
related to the group theoretical transfer map, which is one of the basic
techniques of finite group theory, we shall also study transfer theorems
with respect to some commutator subgroups.
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2. Preliminaries

Let H be a subgroup of G with |G : H| == p < oo, and let
S = {s:},, 31 = 1, be a right transversal of H in G. Then G =
VHsi =L s; sTUH. For any left G-module M, let M€ be a set of
olements in M fixed by all g € G. A homomorphlsm Suyc: MH
M€ defined by Sy g(m) = Fosit-mform e MH | is called the
trace map from H to G and is known to be independent of the choices
of transversal.

LEMMA 1. [9] Let A be a left G-module. Then there is a homo-
morphism ¢ : Hompy(A, M) — Homg(A, M) defined by (p(t))a =

s t(sa).

The map ¢ is a trace map, too. Let C(G) and £ = Z[G] denote
standard complex and integer group ring for G, respectively, and con-
sider

CG) : - Tlgl=Xelx &, Zx ..
(1) Al z
7! 3; / 62 '9k
C(H) : E[H]:J\O«——Xle—— Xk‘—
where each Xj is a free left G-module with generator [gy,- - - , gx] for

gi € G, and [-¢] is a generator of Xy. Let A be an H-homomorphism
from C(G) to C(H), which makes (1) commutes, i.e., Ay = Ap_, 0%,
for k>0, ande’Ag =e. (Here, € and ¢’ are mappings to Z from I[-g]
and X[ y], respectively.) Let Sy ¢ be a trace map Homy (C(G), M) —
Homg (C(G), M), and let

T = SH‘GA* : HOIHH(C(H),]W) — HOIIIG(C(G),]\/{),

where A* = (A, 1) is the induced map of A. For any standard k-cochain
wof Hin M, Ty : Homy (X}, M) --» Homg (X, M) is given by

(2) Tk(u) = (SHygAz) ('u) = SH,G (AZ(U)) - SH,G‘ (uAk).

Let g denote the unique s; such that g € Hs;. Then gg~! € H for
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all g € G, thus To(u)[-¢] = [T, s; ' - u[-H], anc

(3)
Tr(u)lgr, -, 9]

"
_ —1 - -1
=[s7" ulsig(sign) - (sign - ge—1)ow(s091 - 98) |
=1

for k > 0. This is a corestriction map on cochain group relative to
the transversal S, denoted by Corg . Since a corestriction map sends
cocycles to cocycles, and coboundaries to cobcundaries, there is an
induced map on cohomology groups, called a corestriction Cora y over

cohomology groups. Clearly, we have for f € Z*(H, M),
Corg i (FB*(H,M)) = (Corg i f) B*(G, M)

for f € Z*(H, M).

3. Corestriction map

In this section we shall study the following questions.

(a) Are the corestriction maps Corg, g over complexes or over cocycle
groups independent of the choices of transversal?

(b) What conditions give independency of the choices of transversal?

For the map Corz;’ g over coliomology groups, this question is an-
swered positively by Eckmann [3].

THEOREM 2. Corestriction map on cochain group does depend on
the choices of transversal.

Proof. Since corestriction map over cochain group is a composition
map of A* = (1,A) and the trace map Sy ¢ as in (2), and since Sy ¢
is known to be independent of the choice of transversal, we need
to know how the H-homomorphism Ay : X -» X, which satisfies
0L Ar = Ak_10k 1s defined explicitly, for all k.

Let S = {s;}/_, be a transversal chosen for Corg j, and suppose
k = 0. Since s;[-¢] (i = 1, -+, u) is a base for Xg. £’Ag = € implies that
(e'Ao)(si[-¢]) = e(sil-¢]) = ssie([a]) = sil =1 = £/(|-y]), so that we
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may take Ao(si[-¢]) = [-m]- Thus for any h; € H, the H-homomorphism
Ay is given by

(4) Ao(hisi[-gl) = hi - Ao(sil-g]) = hil m].

If S = {si}2 1 sy = 1 is another transversal of H in G such that
s, € Hs;, then s, = h;s; for some h; € H and h, = 1. Hence, A’y :
Xo — X with respect to S’ is given by A'g(h;si[¢]) = Ao(si]¢]) =
[-m], and this implies that Ag depends on the choices of transversal.
Given the choice of Ag as in (4), we have

i
(Corg g w)-¢] = (Su,c(ulo)) H “(udo)(s:[-G))
t=1
1
:H 1 {(Ao(sil-c])) II ([H]) €M,
i=1 =

for u € Hompy (X}, M) = C°(H, M), thus the choice of transversal
does change Cor map on cochain group. O

This is the answer of (a).

For the second question, we concentrate mainly on the lower dimen-
sions (0, 1, and 2, which are essential for the application to the study
of projective representations of groups [6],[8].

THEOREM 3. Corestriction map on cochain group of dimension 0 is
independent of the choices of transversal if one of the following holds.
(1) G acts trivially on M.
(2) For u € Homy (X4, M) = C°(H, M), u[-g] is contained in MC.
(3) Corestriction map is defined on a cocycle group Z°(H, M) in C°(H,
M).

Proof. In cases of (1) and (2), we have

(Corg g u)|-¢] = H s;boulg) = (u-g)*

and this is independent of the choice of transversal. Note that the
condition (2) can be replaced by a condition u[-;] € M*. For (3),
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we remark that ZO(H, M) = MH (v ul-g]), and Z°(G, M) = MC.
It is known that a trace map p : M — MY defined by p(m) =
t i sit-m for m € MY is independent of the choices of transversal

1=1"%1

S. So is the Corg i map from Z°(H, M) to Z°(G, M). O

THEOREM 4. Corestriction map on cochain group of dimension 1 is
independent of the choices of transversal if one of the following holds.
(1) G acts trivially on M.
(2) Corestriction map is defined on a cocycle group Z'(H, M) in C*(H,
M).

Proof. If G acts on M trivially, then HY(G. M) = ZY(G,M) =~
Hom(G, M) so that (1) follows from (2).
We denote a commutative subgroup of G by ¢’. Consider a map

I
Y G/G'— H/H', wigG)=]] (819{8795_1) H'

=1

for g € G. Then it is a reduced group theoretical transfer, and is known
to be independent of the choices of transversal (refer to [4]). The dual
map ¥* of ¥ is a homomorphism Hom(H/H', M) — Hom(G/G’, M)
defined by,

- 1
W) 96" = 1 -9lge) =[] £ (siglg) ) #,

for f € Hom(H/H', M). Since there is an isomorphism from Hom(H/H’,
M) to Hom(H, M) defined by f — f’ where f(hH') = f’(h) for h € H,
the ¥* is a map Hom(H M) — Hom(G, M) such that (v*(u))(g) =
# o u(sig(sig) ) for v € Hom(H, M). Furthermore since Hom(H,
A[) = Z'YH,M), every l-cocycle is a homomorphism, and ¢* =
Corg y : ZY(H, M) — ZY(G, M). Thue the fact that ¢ is independent
of a choice of transversal yields the independence of ¥* of a choice of
transversal. ]
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4. Examples

Our aim here is to determine conditions on which corestriction map
over cochain group of dimension 2 does not depend on the choices of
transversal. Though we do not establish explicit -onditions, there are
many examples of groups.

(i) Let G = (x) x {y) be of order 4. For transversals of H = {(z), we
can take Sy = {1,y}. So = {1,2y},S3 = {x,y},Ss = {x,zy} Write
Cor; with respect to 5;. Using relations that

T=Tyry | =yy = yryyEy
7l = y:m’ﬁ'"l = :17}/3/"1 =r, TY-=y
and a normalized f € Z‘Z(H Q), vw have
(Cori f)(z,y) = flxa! ayag~ ") f (yaga), goyiay—) = (flz,1))?
(Corz f)(z,y) = (f(x, ))2 (Cors f)(x, y),
(Coraf)(z,y) = (fla, 1))*.
Since f(1,1) = f(1,x) = f(x,1) = 1 and f(z,2) = —1, Cor,;(x,y) have
same values for any .S;. Similar calculations show that corestriction
map is independent of the choices of transversal.
(i1) Let G = (x) be of order 4. and H = (x ‘) We may take 4

Lransvvrsalb of H that S; = {L, 7} Sy = {1,423+, S3 = {x,2%} and
= {z?%, ¥3}. Calculations involving each transve rbals are:

=yy =1

w1th Sy, xr =1, 22 e pE ! r?;
with Sy, x%a3 R e S Q. o x?:
with S, :1",371:"”1 =22, 277 = 2771 =1
and with Sy, 277! = 22, :r,2;§_1 = :r:’.’n_"f1 =1

We thus have the followings that

(Cory f)(z,2?) = f(x, 1) f(z,1) == (Cors f)(zx,2%), (i=1,---,4)

(Cory f)(z,2%) = f(1,1) (%, 2%) = (Cors f) (2, 2%), (i=1,--- ,4).
This shows that Cor; does not depend on the choises of transversal.

We need to remark that corectriction map plays very important
role in studying group representation theory, specially for determining
relations between representations of a group and those of its subgroups

[6],(8]. Because corestriction map clepends on the choices of transversal,
it is fundamental to choose proper transversal.
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5. Transfer of groups

Let H be a subgroup of G. 1f k = 1 in (3) then the corestriction
map on cohomology groups is the group theoretical transfer map. Let
A be any abelian group, and # be a homomorphism H — A. A
homomorphism 8* : G — A defined by

"
H0 s,g5:g '), g€
i=1

is the transfer map of . When 6 is a homomorphism from H to H/H',
the 6* is called the transfer of GG into H. In connection with transfer,
conjugacy classes of H play important role in studying fusion of H or
the focal subgroup of H in G.

In this section, we shall study transfer theorems with resepct to a
generalized term, called “F-conjugate”. For this we may generally refer
to [1].

Let F be a field of characteristic p > 0 and E be a normal closure of
F. For a finite group G, let G, be a p-part of G and G, be a p’-part
of G. If p = 0 then G, = 1. Chocse any positive integer n divisible by
exp(G). Write n = nyn, where ny [resp. n,)] is a p’ [resp. p']-part
of n, and let ¢, , be a primitive ny-th root of unity. Two elements »
and y in G are said to be F-conjugate if

y=2z"'z™); for some z € G,o € Gal(E/F) =

where m(c) is an integer satisfying both (, , =: C;Z:,(/”) and m(o) =
1 (mod n,). The element [2,y], = z 'y a0y = = (gm@))y
is an F-commutator element of G, and the group generated by all
F-commutator elements is an F-commutator sibgroup, denoted by
G'(F).

In terms of F-conjugate, two elements =,y € H are said to be F-
fused in G if they are F-conjugate in G, i.e., y = (x7(?))9 for some
g € G,0 € G. Furthermore an F-focal subgroup Focp(H) of H in G
is the subgroup generated by the quotients of pairs of elements of H
which are F-fused in G. That is,

Focp(H) = (h™'k|h,k € H, which are F-fused in G)
= (Y W™ h (™ € Hog € G0 €G).
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If F is algebraically closed, F-conjugate is nothing but conjugate, so
that Focp,g(H) = Focg(H) the focal subgroup of H in G.

THEOREM 5. Let H be a subgroup of G. Let H'(F) be an F-
commutator subgroup of H. Thern
(1) H' is normal in Focg(H), and H'(F) is normal in Focp ¢ (H).
(2) H'(F)- Focg(H) = Focpg(H), and H'(F) N Focg(H) = H'.
(3) FOprg(H)/HI(F) = FOCG(H)/H/.

Proof. For (1), we shall only prove the second statement. Clearly
H'(F) € Focp,g(H). For any h='(h™(")9 € Foc.q(H) and [a,b], €
H'(F) with 0,7 € G and a,b,h,h? € H, g € G, (k"1 (h™(7)9)=1 [q, b],
h=U(A™(T))9 = [gh ™ (™) bh ™ 7)?) which s contained in H'(F).

Choose any A1 (h™(9))9 € Focp.(H) with ¢ € G, € G. Then

h—l(hm(cr))g _ h-—]hm(o)(hm(r“))ml (hm(d))g
= [~ 1o (™) Y (™9 € H (F) - Focg (H).

Certainly, H'(F)-Focg(H) C Focp g (H), and it foliows H'(F)-Focg(H)
= Focpg(H). Finally, let y € H'(F) N Focg(H). Then y € H'(F)
implies y = [a,b], = a‘l(am("))b for some a,b € H, 0 € G. Further
since y € Focg(H), y is a quotient of pairs of elements of H which

are fused, so that we may generally assume that m(o) = 1. Hence
y = [a,b] € H' and H'(F)NnFocg(H) = H'. O

By an F-group, we mean all irreducible characters of G in E have
values in F'. It is shown [1] that for an abelain group G, G is an abelian
F-group if and only if F' contains Cexp(G),,; that is, exp(G)|m(o) — 1
for all o € G. Thus for a normal subgroup N of G. G/N is an abelian
F-group if and only if G'(F) C N.

COROLLARY 6. If H is an either abelian F-group or abelian p-group
of G then Foc(H) = Focp o (H).

Proof. It is shown that H is an abelian F-group if and only if
a™) = q for any a € H. Further since every abelian p-group is
an abelian F-group [1], the proof follows immediately. 0

We denote by G the F-kernel of GG, which is the intersection of
the kernels of all elements in Hom(G, F*). It is proved [1] that for a



Cohomology of groups and transfer theorem 391

normal subgroup N of G, the factor group G/N is an abelian F,p'-
group if and only if N contains the Gp. We refer G'(p) and G'(p’)
to p-commutator and p’-commutator subgroups of G, respectively. For
relations between these groups, it has been studied and proved in [1]

that
G(p)- Gr=G, G'(p)NGr =G'(F

)
G'(F)-G'(p) =Gp. G'(F)NG'() =
Now we shall add one more relation with Focg ¢:(H )
COROLLARY 7. Focg(H) is a subgroup of A'(p).

Proof. Let K be a subgroup of H containing Focp ¢ (H) with K/Focp ¢
(H) = (H/Focp,g(H))p- Then H/K is a p-group and K/Focp g(H) is
a p’-group. Since H'(p) is the smallest subgroup of H to be its factor
group H/H'(p) an abelian p-group, we have H'(p) C K. Furthermore
these groups are equal because [K : H'(p)] is divisible by both p and
p’, and this implies Focp ¢(H) C H'(p) (refer to diagram 1). O

Thus, combining all results in [1], Theorem 3 and Corollary 7, we
have diagram 2.

H — HfFocy(H H(V \
| |

FOCF ()

K — (H/FOCF_G(H))D H(F)/ \
‘ ‘ \ /I(ﬂ)
Foc p o(H) 1

dagram 1 diagram 2

Furthermore, we have that
Hp -Focpg(H)=H'(F)-H'(p') - Focpg(H) = H'(p') - Focp(H)

and
Hy -Focpg(H) = H'(F)-H'(p') - H (F) - Focg(H)

= Hr Focq(H).
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Thus it follows that
HF . FOCF,G(H) = H/(p/) . F()CF’G(H) = Hp . FOCG(H).

The study of fusion of p-elements is very close to the question of
whether a given group G posesses a nontrivial p-factor group, that is,
a proper normal subgroup of index a power of the prime p. Griin and
Alperin gave criterions for the existence of nontrivial p-factor groups.

LEMMA 8. ([4, p.245]) G has a nontrivial p-factor group if and only
if G has a nontrivial abelian p-factor group. Let P be a Sylow p-
subgroup of G, and K be normal in G such that G/K is an abelian
p-group. Then PNG’ C K and G/K is isomorphic to the homomorphic
image of P/(PNG'"). Further there is a normal subgroup H of G such
that G/H = P/(PNG’).

This theorem shows the significance of subgroup PN G’, and tell us
that G possesses a unique maximal abelian p-factor group isomorphic
to P/P NG’'. It has been proved P NG’ is a focal subgroup of P in
G, and the focal subgroup provides us more useful expressions for the
kernel of the transfer into Sylow subgroup.

We shall study analogues of lemina involving abelian F-group.

THEOREM 9. A group G has a nontrivial F-factor group if and only
if G has a nontrivial abelian F-factor group.

Proof. One direction is very obvious. Suppose that G has a normal
subgroup N and G/N = L is an F-group. Consider an F-commutator
subgroup L'(F) of L. Then L’ ¢ L'(F) and L/L'(F) is an abelian F-
group. The corresponding theorem shows the exiscence of subgroups
H and K of G containing G’ such that H/N = L'(I") and K/N =1".
Since L is an F-group, so are all subgroups L'(F) and L' (see [1]).
Thus, G/H = L/L'(F) is an abelian F-group, and G/K = L/L'is an
abelian group. g

COROLLARY 10. The condition "F-factor group’ in Theorem 9 can
be replaced by F, p-factor group, or F, p’-factor group.

Proof. If G/N = L is a p’-group, then so are L/L/(F) and L/ It
L is a p-group, then L = Lr = L'(p') and L'(p) = 1/(F) = L'. Thus,
L/L'(F) = L/L' is an abelian F, p-group. O
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THEOREM 11. Let P be a Sylow p-subgroup of G, and let K be a
normal subgroup of G such that G/K is an abelian F-group. Then
PNG' C PNG'(F) is a subgroup of K, and G/K is isomorphic to the
homormorphic image of P/(PNG'(F)).

Proof. Since G/K is an abelian F-group, G'(#) is contained in K,
and PNG C PNG'(F) C PNK. And it lollows that G/K =
P/(PNK). Consider a canonical projection 7 : 2 — P/(PNK). For
ze PNG'(F), n(x) =2z(PNK)=1thus PNG'(F) C Kerr. Hence
there is a surjection P/(PNG/(F)) — P/(PNK) = G/K. Therefore
this is in fact PNG'(F) = PNG'. O
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