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FOCK REPRESENTATIONS OF
THE HEISENBERG GROUP H{™

JAE-HYUN YANG

ABSTRACT. In this paper, we introduce the Fock representation
UFM of the Heisenberg group Hﬂgg’h) associated with a positive
definite symmetric half-integral matrix M of degree h and prove
that UF»M s unitarily equivalent to the Schrédinger representation
of index M.

1. Introduction

For any positive integers g and h, we consider the Heisenberg group
Hﬁgg‘h) = { A, k)| A€ RP9) ke RPM |y 4 4\ symmetric }
endowed with the following multiplication law
(1.1) Ops)o W, W k) =X+ N, p+ kK + 20— pN).

The Heisenberg group Hn(tg ") is embedded in the symplectic group

Sp(g + h,R) via the mapping

E, 0 0 ‘tupn
A F K
HEM 5 O\ k) — Pl € Sp(g + h.R).
R ( ) 0 0 Eg __t)\ ( )

0 0 0 Ey/

This Heisenberg group is a 2-step nilpotent Lie group and is important
in the study of toroidal compactification of Siegel moduli spaces. In
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fact, Hég’h) is obtained as the unipotent radical of the parabolic sub-
group of Sp(g-+h, R) associated with the rational beundary component
Fy (cf. [4]p.21).

The purpose of this article is to study the Fock representation of the
Heisenberg group Hﬂ(ag ) associated with a positive definite symmetric
half-integral matrix of degree h. This paper is organized as follows. In
section two, we review the Schrédinger representation U(o.) of Hnqu‘h)
associated with a real symmetric matrix ¢ of degree h. In section
three, we construct the Fock representation UM of the Heisenberg
group Hﬁgg ") associated with a positive definite symmetric half-integral
matrix M of degree h and prove that UF™ is unitarily equivalent to
the Schrédinger representation U(eoaq) of index M. For more results
on the Heisenberg group Héf"h), we refer to [5]-[11].

NotaTIONS. We denote by Z, R and C the ring of integers, the
field of real numbers, and the field of complex numbers respectively.
C[* denotes the multiplicative group consisting of all complex numbers
z with |z] = 1. Sp(g, R) denotes the symplectic group of degree g. The
symbol “:==" means that the expression on the right is the definition
of that on the left. We denote by Z*1 the set of all positive integers.
F:1 denotes the set of all k x [ matrices with entries in a commutative
ring F. For any M € F® ! 1Af denotes the transpose matrix of M.
For A € F(®*F) (A) denotes the trace of A. Ej denotes the identity
matrix of degree k. For a positive integer n, Sym (n, K) denotes the
vector space consisting of all symmetric n x n matrices with entries in
a field K.

Z(;dg) = { J = (Jra) € AURD, | Jka >0 forall k,a } ,
lJ| :Z Jk,as
k,a

J:tle :(Jlla"' 1Jka:t17”' 'Jh_q)a
TV =Jil - Jral - Jng.

For ¢ = (£re) € RP9) or C9) and J = (Jra) € ZZ(;dg), we denote

éJ— Jir gJiz | Jka'__f']hH
511 12 ka hg -
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2. Schrodinger representations

First of all, we observe that HD({’ s a 2-step nilpotent Lie group. It

is easy to see that the inverse of an element (A, p, k) € Hn(zg’h) is given
by
(A7H7 ’(“’)—1 = (“/\1 —f, —K + )‘ty - qu)

Now we put
(2.1) A k] = (0,1, 8) 0 (A, 0,0) = (A, p, & — p'N).

Then H}}({g ) may be regarded as a group equipped with the following
multiplication

(2.2) [ g, 6] 0 [, po, ko] = [N == Ao, pt + o, 5 + o + Auo + po AJ.
The inverse of [\, u, ] € Hﬂgg ) g given by

op k] 7= [N~ =R+ A AL
We set

(23) K== { 0,10,5] € HEM | p e R®9) | i = t € RN }

Then K is a commutative normal subgroup of H]I({g P Let K be the
Pontrajagin dual of K, i.e., the commutative group consisting of all
unitary characters of K. Then K is isomorphic to the additive group
R*9) x Sym (h,R) via

(24) <a,a>=mORRE g o0 k€ K, a= (k) € K.
We put

(2.5) S = { [2,0,0] € HE" A e R®9 | 2RO,

Then S acts on K as follows:

(2.6) ax([0, . 6]) = [0, ok + A+ 'y, [1,0,0]€8S.
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It is easy to see that the Heisenberg group (Hngg ’h),<>> is isomorphic

to the semidirect product S x K of S and K whose multiplication is
given by

(A a) - (Ao a0) == (A4 Xo,a+ axrlag)), \MA£S, a,a0 € K.
On the other hand, S acts on K by
(2.7) o3 (@) := (f+ 2&\, k), [2,0,00€8, a=(iR)eEK.
Then we have the relation < ay(a),é >=< a,a}(a) > forall a € K

and a € K. )
We have two types of S-orbits in K.

TYPE L. Let & € Sym (h,R) with & # 0. The S-orbit of a(#) := (0,k) €
K is given by

(2.8) Op = { (26X, /) € K ‘ Ae R(’w)} > Rk,

TypE II. Let j € R™9). The S-orbit @y of a(g) := (,0) is given by

(2.9) Oy = {(9.0)} = a(y).

We have
K =
HES’ym(h R) h,g)
(

as a set. The stabilizer S; of S at a(r) = ) is ziven by
(2.10) Sz = {0}.

And the stabilizer S; of S at a(g) = (g,0) is given by

(2.11) S; = { I\, 0,0] ’ A€ Rb9) } — 5 = R,

From now on, we set GG := Hﬂ(tg " for brevity. K is a closed, commu-
tative normal subgroup of G. Since (X, p, k) = (0, i1, K + pA) 0 (X, 0,0)
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for (A, u,x) € G, the homogeneous space X := K\G is identified with
R{*9) via

Kg=Ko(\0,0)— X, g=(\p,k)eG.
We observe that G acts on X by
(2.12) (Kg) - go = K (A+10,0,0) = A+ o,

where g = (A, 1, k) € G and go = (X, 1o, ko) € C.
If g = (A, 1, k) € G, we have

(2.13) kg =(0,p, 6+ 1N, so=1(20,0)

in the Mackey decomposition of g = kg 0 s, (cf. [3]). Thus if go
= (Ao, Ho, K0) € G, then we have

(2.14) 8g 090 = (X,0,0) 0 (Xo. o, K0) = (A + Ao, po, Ko + A o)
and so
(2.15) ksyog0 = (0, 110, K0 + pio ‘Ao + Ao + 1o "A).

For a real symmetric matrix ¢ = ‘c € R?") with ¢ # 0, we consider
the one-dimensional unitary representation o, of K defined by

(2.16) oe (0, py 6)) := e2™o e [ (0, %) € K,

where I denotes the identity mapping. Then the induced represen-
tation U(o.) := Ind% 0. of G induced from o, is realized in the
Hilbert space H,, = L*(X,dg§,C) = L? (R(h’”),df) as follows. If
9o = (Mo, po.k0) € G and z = Kg € X with ¢ = (\, i, k) € G, we
have

(2.17) (Ugo(06)f) (2) = 0 (ksog0) (F(2g0)), f € Ho,.

It follows from (2.15) that

(218)  (Ugy(0e)f) (N) = @molelmotro Dot hol} (3 4 xg).
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Here we identified 2 = Kg (resp. zgy = K ggo) with A (resp. A\4-Xg). The
induced representation U(o.) is called the Schridinger representation
of G associated with o.. Thus U(o.) is a monomial representation.

Now we denote by H?¢ the Hilbert space consisting of all functions
¢ : G — C which satisfy the following conditions:

(1) ¢(g) is measurable with respect to dg.

(2) ¢ ((0,p1,%) 0 g)) = e2m()pig)  for all g € G.

(3) 1 6 17= [ 6l)2dg < 0, ¢ = Kg,
where dg (resp. dg) is a G-invariant measure on G (resp. X = K\G).
The inner product (, ) on H°¢ is given by

(¢1, P2) ::/(« $1(9) #2(g)dg, 1, ¢ € H".

We observe that the mapping ®. : H,, — H°< defined by
(2.19)

(Be(£)) (g) 1= meAHu™Y £(0) FeH,., g=(\p k) €G

is an isomorphism of Hilbert spaces. The inverse ¥, : H%¢ —s H,_ of
$,. is given by

(2.20) (Te(#)) (N) = d((X,0.0), ¢eH™ AecRMD

The Schrodinger representation U(o.) of G on H¢ is given by
(221) (Uy,(0c)8) (g) = e letrtinRotd o2 Wk g ((3,0,0) 0 g)

where go = (Ao, 1o, 50), 9 = (A, it,5) € G and ¢ € H%. (2.21) can be
expressed as follows.
(2.22)

(Ugy(0c)9) (g) = eZmiodetrotrntuc Dotu 222 o)t o\ 4+ 1,0, 0)).

THEOREM 2.1. Let ¢ be a positive symmetric half-integral matrix
of degree h. Then the Schrédinger representation U(o.) of G is irre-
ducible.

Proof. The proof can be found in [5], Theorem 3. O



Fock representations of Heisenberg groups 351

3. Fock representations

We consider the vector space V(79 .= R(".9) x R(h9) We put
(3.1) Pra = (Era.0), Qu := (0, Ep),

where 1 < k,l < hand 1 <a,b < g. Then the set {Pi,, Qka} forms a
basis for V("9 We define the alternating bilincar form A : V{"9) x
Vg R by

(3.2) A((Aosi0), (M) =0 (Mo ‘—p0™), (Mo po), (A, p) € V9,

Then we have

(3.3) A(Prq, Pp) = A(Qka: Q) =0, A(Pra, Q) = 8ap 611,

where 1 <k, Il < hand 1 < a,b<g. Any element v € V{*9) can be
written uniquely as

(3.4) V= TkaPra+ > ybQur  Tha, Y15 € K.
k.,a b

From now on, for brevity, we write V := V9 and v = Tz P+yQ instead
of (3.4). Then it is easy to see that the endomorphism J : V — V
defined by

(3.9) J(zP +yQ) = —-yP+xQ, zP+yQeV

1s a complex structure on V' which is compatible with the alternating
bilinear form A. This means that J is an endomorphism of V' satisfying
the following conditions:

(J1) J2=~1 onV.

(J2) A(Jvg, Jv) = A(vp,v) for all vg,v € V.

(J3) A(v,Jv) >0 for all v € V with v £ 0.

Now we let Vo = V + iV be the complexification of V', where i =
V—1. For an element w = v; + 1y € Vg with vy, ve € V', we put

(3.6) W= vy — ivsg.
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Let Ac be the complex bilinear form on V¢ extending A and let Jc
be the complex linear map of V¢ extending J. Since J& = —I, Jc has
the only eigenvalues +i. We denote by V* (resp. V") the eigenspace of
Vc corresponding to the eigenvalues i (resp. —i). Thus Ve = Vt +V .
Since

Jo(Pra £1Qka) = Fi(Pra £iQkre),

we have

BT VI=3 C(Pua~iQka)s V7 =Y C(Pra+iQa).
k.,a k,a

Let

(3.8) Voi=) CPuq, 1<k<h, 1<c<g
k.a

be the subspace of V- as a C-vector space. It is easy to see that V, is
isomorphic to V' as R-vector spaces via the isomorphism 7 : V — V,
defined by

(3.9) T(Pro) := Pray, T(Qu):=1iPy

We define the complex linear map J, : Vi — Vi by J.(Pra) = iPrq
for 1 <k < h 1 <a< g Then J, is compatitle with J, that is,
ToJ = J,oT. It is easily seen that there exists a unique hermitian
form H on V, with InH = A. Indeed, H is given by

(3.10) H(v,w) = A(v, Jyw) + iA(v,w), v,u €V,.

For v = Zk’a 2kaPra € Vi with zx, = Tie + iYka (Thas Yka € R), for
brevity we write v = zP. For two elements v = zP and v = 2’P in
V*? H(v,v’) = Zk,a E;';Z;ca'

We observe that

Ve=) CPu+) CQu=V*+V DVE
k,a [

For w = 2P 4 2'Q € V¢, we put

w=w+w", wi=NP—-iQ), w =z (P+ 1Q).
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The relations among 29, 21, 2%, 2 are given by

1 ,
(3.11) 2t = E(zoiizl), =2t 27, 2 =iz - 2.
Precisely, (3.11) implies that

+ 0 - 1 o _ _+ - 1
zZp = -Q—(zka T2k, )y Zkg = 20y F 25ys Zhe = W2 — zka)

where 1 <k < hand 1 <a<g. Itis easy to see that
(3.12) Ac(w,wt) = —22’2 2 2h = Z {(28.)? + (214)?}
k.,a

Let

Gc = {(zo,zl,a) 20,2 e CM9 g e WP gy 2110 symmetric}

be the complexification of the real Heisenberg group G := Hy (h.9)  Anal-
ogously in the real case, the multiplication on G¢ is given by (1 1). If
w= 2P+ 21Q := Zk o zkaPka + }:l s 2 @b, we identify 20, 2! with
the h x g matrices respectlvely

0 0 0 1 1 1
21 2y .- 2 211 Zi2 - 2
0 0 0 1 1 1
221 222 e Z2g 221 222 . e Z2g
0. 1._
z0 = . 2=
0 0 0 1 1 1
Zh1 Zhy - Zpg Zhy Zhy --- Zpg

That is, we identify w = z20P+2'Q € V¢ with (2°. 2') € Ch9) x Ch9),
If w=20P +2'Q, & = 20P + le € V¢, then
(313) (w,a)o (th,a) = (w+b,a+a+205" — 21120, a,4.€ COM,

From now on, for brevity we put

(3.14) Rt :=P—iQ, R :=P+iQ.



354

Jae-Hyun Yang

fw=2"Rt+2"R™, w=2YRt +2 R~ € V¢, by an easy computa-

tion, we have

(3.15) (w,a) o (w,d) = (W,a +a+ 2zt 15" -2~

with

W= (z"+ 2R+ (27 +27)R".

Here we identified 2%, z~

+ +
211 %12

with h X g matrices

_.|..

)

zlg zl_l 212 Zlg
+ + + — - -
4 221 %29 224 _ 221 222 Zag
z7 = , % = )
+ + + - ~ -
Zp1 “h2 Zhg Zh1  “h2 Zhg
It is easy to see that
(3.16) Pc := { (w™,a) € Gelw™ € V™, aeChM }

is a commutative subgroup of G¢ and
GNPc=2, Gc=GoPF,

where Z := { (0,0,x) € G|k = '« € R"™P } = Sym (A, R) is the cen-
ter of G. Moreover,

(317) P(C\GC >~ V+ =3 R(hvg) X R(hvg) o iZ\G'

For ¢ = 'c € Sym(h,R) with ¢ > 0, we let 6. : P — C* be a
quasi-character of P¢ defined by

(3.18) bc((w™,a)) =¥ (w7~ a) ¢ Pe.

Let
UFe = Ind¥ &

be the representation of G¢ induced from a quasi-character é. of Fc.
Then U is realized in the Hilbert space H¢ consisting of all holo-
morphic functions ¥ : G¢ — C satisfying the following conditions:



Fock representations of Heisenberg groups 355

(F1) ¥((w™,a)og) = é:((w™, aNw(g) = e2™7(D) y(g) for all (w™,a)
€ Pr and g € Gg.

(F2) [z\q [W(@)I? dg < oo
The inner product <, >g. on HF¢ is given bv

< @/)hwz >F,c::/ ( )—IZ ) ., 7,/)1,1'02 € HF’C’ g = Zg
Z\G

UT¢ is realized by the right regular representation of G¢ on H¢ .

(3.19) (UT(g0)¥) (9) = ¥iggo), ¥ € HF", go,9 € Ge.

Now we will show that U¢ is realized as a representation of G in the
Fock space. The Fock space Hp . is the Hilbert space consisting of all
holomorphic functions f : Ch9) 22y, —, C satisfying the condition

| flIFe= /N ) [FW)|2 e 2o (W' W) gy « o0
. g

The inner product (, )p. on Hp, is given by

(s fo)pe = /( , FLW) f2(W) e 2o WW) gy f1.f2 € Hpe.
Clhoo

LEMMA 3.1. The mapping A : Hrp. — HFS, Ay = A(f)(f €
Hp.) defined by

(320) ((ZOP—f-ZlQ )) 27r10{c(a+21,z t2t)} f(Zz )

is an isometry of Hp . onto H¥'¢, where 22% = 2% +iz! (cf (3.11)). The
inverse A : HF® — Hp . Ay = A(w) (v € HF) is given by

(3:21) Ap(W) =y (%WR*) . W e,

where R* = P ¥iQ (cf (3.14)).
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Proof. First we observe that for w = 2°P+2!1Q = 2tRt+ 2 "R~ ¢

Ve,
(w,a) = (2" R™,a+2iz" '27) o (Y RT,0).

Thus if ¥ € HF® and w = 2P + 2!Q = 2* Rt + 2~ R~ by (F1),
(322)  W((w,a) = ST (T RE0)),
Let W =z + iy € C»9) with z,y € R™9), Then

tP+yQ =2z Rt + . R™, 2% =x+iy.

So z7 2+ = IW 'W. According to (3.22), if ¥ € HF°, we have

WP +3Q,0)) = e ™ Ty (LW R, 0).

Thus we get

2

(=P + 9QONP =2 (G RY,0)

Therefore

. . —270(c YA 2
[ W@t = [ et A ) faw < oo

It is easy to see that A is the inverse of A. Hence we obtain the desired
results. O

LEMMA 3.2. The representation UF*¢ is realized as a representation
of G in the Fock space Hp . as follows. If g = (AP+uQ, k) = (A pu, k) €
G and f € Hp,, then
(3.23)

(UF.C(g)f) (W) — e27ria(cn) e—wa{cl(’f—%ﬂ’l/‘f)} f(W + C)» W e C(h’g),

where { = A + iu.
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Proof.

(vPe(9)1) (W) = (AUF=()(A)) (

- UFC(g(Af) WR )

o (mre0)-s)
o (b))

1 ; 1 ;
Ay <(,\+ 5W)P—|—(;L— %W)Q,h’ + —Z—W‘,u+ %Wﬂ\)

[\3|)—Av

i

= 2mio{e FW I CH WO} piy L0y ()
= e2miolen)  mme e THWIOY fy 4 (),

where ¢ = A+ iu. In (*), we used (3.20) and the facts that 2iz~ tzt =
LW +WW) and 227 =W + (. 0

DEFINITION 3.3. The induced representation /¢ of G in the Fock
space Hp . is called the Fock representation of G

Let W = U+iV € C*9) with (/,V € R®9 T U = (ugq), V = (vip)
are coordinates in C'*9) we put

dU = dundulg s dUhy, dV = d'l)lldﬂ12 ce dl}hg
and dW = dUdV. And we set
(3.24) dp(W) i= e W) gy,

Let f be a holomorphic function on C*9), Then f(W) has the Taylor
expansion

)= Y agW, W= (wi,) € CH9),
Jezls®

where J = (Jgq) € J € Z(Zhdg) and W7 .= le{leJ‘f . w,{g‘ﬂ
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We set |W/o := maxy o(Jwia|). Then by an easy computation, we
have

/c(h.g) |f<W)|2d/L(VV) = lim lf(W)|2-’1[L(W7)

T3>0 |W|OOST

= Tli'rrolO}:aJEE,/;W| ) WIWEK du(Ww)

JK

= Z la2x= Mg,
J

where J runs over J € Z(fdg ).

Let Hp g be the Hilbert space consisting of all holomorphic functions
f:cthe) ¢ satisfying the condition

(3.25) 1712 = /C R duw) < o

The inner product (, ) on Hp 4 is given by

(o= [ AW BT W), fif2 € Moy

Thus we have

LEMMA 3.4. Let f € Hp 4 and let f(W) = > asW be the Taylor
expansion of f. Then

A2 =" Jas Pl

(h)
JeL;®

For each J € Z(:dg ), we define the holomorphic function @ ;(W) on
C™9) by B

L J
(3.26) ® (W) = (J1)~3 (sz)  Werho,

Then
1 ifJ=K

3.27 b;,0k) =
( ) (€7, ®x) {1.’) otherwise.
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It is easy to see that the set { o, J € Z( .9) } forms a complete or-

thonormal system in Hj g. By the Schwarz mequality, forany f € Hy
we have

’g’

(3.28) IFW)| < eFW W5, W e o),

Consequently, the norm convergence in Hj, 4 implies the uniform con-
vergence on any bounded subset of C(*9). We observe that for a fixed
W’ € Ch9) | the holomorphic function W —- e WW’) admits the
following Taylor expansion

(3.29) e W = N g, (W) @, (WY).
Jez{y®

From (3.29), we obtain
——— 1 tA77 1 —— J
(3.30) @ (W) = (J‘)"if ™o (W W) (7r§W) du(W).

Thus if f € Hp 4, we get

(fw), oW I (f, > @ (W) <I>J(-)>
J

Hence ¢™ (W W) is the reproducing kernel for Hp,g in the sense that
for any f € Hp 4,

(3.31) W) = ™MW W F(W') du(W').
Ch.9)

We set

(3.32) k(W,W') = e’“’(WtWT)’ W, W' e ctho),
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Obviously x(W,W’) = x(W’,W). (3.31) may be written as

(333)  f(W)= /C W) SOV (W), f € My

Let M be a positive definite, symmetric half-integral matrix of de-
gree h. We define the measure

(3.34) dpp (W) 1= e~ 2me (MWW gy

We recall the Fock space Hp aq consisting of all holomorphic functions
f:C®9) ., C that satisfy the condition

639 W= 10kac= [ DR dune W) < oo

The inner product (, )a := (, )paq 00 HE am is given by

(odoas= [ RO R duraW), 512 € Mo

LEMMA 3.5. Let f € Hpa and let g(W) := f ((2M)—%W) be the
holomorphic function on C"™9). We let

gW)= > apmsw’

(+.9)
Jezz')g

be the Taylor expansion of g(W). Then we have
IF IR = (£ Flm = 279(det M)™9 3" Japq g2 700,

(h,g)
JGZE(,g

Proof. Let M3 be the unique positive definite symmetric matrix of
2 - _

degree h such that (M%) = M. We put W := V2MIiW. Obviously
dW = 29 (det M)9dW. Thus for f € Hp rq, we have

(Ffa= [ VFO)P a9

= 279 (det M)~ / (W) 2 du(W)
C(h.g)
= 279(det M)™9 Z |¢’1M,J127T_|J|J! (by Lemma 3.4)

(h,9)
JeZzo"
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Proof. Let M be the unique positive definite symmetric matrix of
2 .
degree h such that (M%) = M. We put W := v/2ZM2W. Obviously
dW = 29 (det M)9dW. Thus for f € Hp a4, we have

(. F)m = / FOW)I dpa(W)

Clh.g)

=29t My [ (W) du(

Clh,9)
= 279(det M) Z lar, 72~ I (by Lemma 3.4)

(ro9)
Jezyy’

O

For each J € Z(zhdg ) , we put
(3.36)

1 1 J
Ban (W) =28 (det M)E (1)7F (mm)iw)”, W et

LEMMA 3.6. The set {q)M,J tJ e Z(:O’g) } is a complete orthonor-
mal system in Hp .

Proof. For J,K € Z(>hdg), we have

(®rt,0, Bat i) g = 29(det MYI(JY) "2 (K1)~ 3

1 1 — K
x/ (Cnmytw)” (@ra)3 W) dup(w)
Cha)
= (J)"2(K!)" % (w2 W (2 W)K du(W)
Clh.g)
=(d,,Pxk).
By (3.27), we have
1 fJ=K
(3.37) (M7 M) = .
0 otherwise.

We leave the proof of the completeness to the reader. (|
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We observe that for a fixed W’ € C®™9) | the holomorphic function
W — e MWW admits the following Taylor expansion

(3.38) e MVIW) = N @y s (W) D S (W),
VoA

If f € Hpa, we have

USRS IS SRR IVIIVE SV L

Jez y?
= f(W').
Hence ™MW W) ig the reproducing kernel for H F.m in the sense
that
339) S0 = [ ) T g (),
.9

For U € R™9 and W € C*9) we put
(340) k(U’ W) - e27ra(_(7 U+iW W2 fW).

Then we have the following lemma.

LEMMA 3.7.

/ k(U, W) k‘(U, ‘V/)dU —_ e21ra(w1fvwl)'
R(h.9)

Proof. We put
T(W, W) ::/ k(U,W)k(U,W")dU.
R(h.g)

Then we have

I(W, W’) _ em(wfww_v“ﬁ/*') / 6—4170(UtU) e,ma{U’(W—W)} dU
' R9)

Pt TR AT _ 2 —
:ewa(w W4+Wtw )H / e ar{ui, —tuka(Wra—wj )} duka,
k.a R
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where W = (wiq), W' = (w},) € C™9) and U = (up,) € R™9). It is
easy to show that

/ e~ 4T {ufa —iuka(wka—w},)} dug, = e~ 7 (Wha—wj,)?
R

Thus we get
I(VV, W/) — ewa(w,tW+W—’tW7) e T >k a(wkaﬁ;‘z:)z

’
— e27r Ek,a WkaWy,

_ ezm(th)

For U € R"™9) and W € C"9' we put
(3.41) k(U W) 1= e2mo{iM(-U U= W W20 W)} O

LEMMA 3.8. Let M be a positive definite, symmetric half-integral
matrix of degree h. Then we have
(3.42) kpm(UW) = k(M3U, —iM2W)

and

(3.43) / kamt (U, W) kg (U, W) dU = (det M)~ # . g2ro (MW W)
R(h.g)

Proof. The formula (3.42) foliows immediately from a straightfor-
ward computation. We put

Toa(W, W) = / kend (U, W) Fng (D7) dU.

R(h.9)
Using (3.42), we have

T (W, W) = /
R{M.9)

k (M%U, ~77M%W) k (M% U,—iM%W') dU

= (det M)~ % / k (U, —z‘M%W) Tk (U, ~iM%W') dU
R 9)

= (det M)”% Ce2me (MW W) (by L.emma 3.7) O

We recall that the Fock representation U™ of the real Heisenberg
group G in Hp aq (cf. (3.23)) is given by

(3.44) (UPM(g)f) (W) = 2miotMm) . =me MW} (17 4 (),
where g = (A, 1,k) € G, f € Hpat and ( = A +ip € Ch9).
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LEMMA 3.9. The Fock representation UFM of G in Hp am is uni-
tary.

Proof. For brevity, we put U, s(W) = (UFM/g)f) (W) for g =
(A, k) € G and f € Hpaq. Then we have

e, 5> Ugflm = ”Ug,fH?M
:/ﬂ(h_q) Ug s (W) Uq (W) dpepa (W)

me tx otz st Tt tr
:‘/n(h e {(M(CIEH2W TCHCCHIW W2W T} | pey 4 ()2 aw

= [ FOVIP duna (W)

= (£ HHim =I5 O

We recall that the Schrodinger representation USM := U(oaq) of
the real Heisenberg group G in the Hilbert space Hg 4 = L? (R(hvg), d€)
(cf. (2.17) or (2.18) ) is given by

(3.45) (USM(g)f) (€) = e2riviMintnd 420’} £ 4 3y,

where ¢ = (A\,p,k) € G, f € Hspm and € € R™9 . In order to
emphasize M, sometimes we call U5 the Schrédinger representation
of G of index M. The inner product (, )g m on He aq is given by

(Fr, fo)sm = /R AW RO, fi € Hy

And we define the norm || ||s,a on Hs aq by

1712 pg = / FOP AU, | € Hsan.
R(h,g)

THEOREM 3.10. The Fock representation (UM Hp ) of G is
untarily equivalent to the Schrédinger representation (UM, Hg a4) of
G of index M. Therefore the Fock representation Up a4 is irreducible.
The intertwining unitary isometry Iag : Hg p — HEPM is given by

B48) (L)W= [ k(e W) e,

where f € Hgp = L? (RM9) d€), W € C™9) and kr (£, W) is a
function on R9) x C"9) defined by (3.41). :
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Proof. For any f € Hgpm = L2 (R dg) | we define

Umf) (W) = /R o k(& W) f(e) g, We .

Now we will show the following (I1), (I2) and (I3):
(I1) The image of Hg aq under Ixq is contained in Hp aq.
(I2) Iaq preserves the norms, i.e., || flls.m = [ Imfllm-
(I3) Ia is a bijective operator of Hg aq onto Hp aq.
Before we prove (I1), (12) and (I3), we prove the following lemma. [J

LEMMA 3.11. For a fixed U € R"9)  we consider the Taylor expan-
sion

(3.47) km(UW) = Y hy(U)@pm,s(W), WeChs

(h,g)
Jezz(,g

of the holomorphic function kx (U, -) on C*9). Then the set {hy|
J e Z(:dg ) } forms a complete orthonormal system in L? (R(h*g), dg) .
Moreover, for a fixed W € C"%) (3.47) is the Fourier expansion of
ka (-, W) with respect to this orthonormal system { hy|Je€ Z(:dg) } .

Proof. Following Igusa [2],pp.33-34, we can prove it. The detail
will be left to the reader.

If f € Hg m, then by the Schwarz inequality and lemma 3.8, (3.43),
we have

= (det M)~ % .MMV ey

Thus the above integral (Iaqf)(W) converges uniformly on any com-
pact subset of C(*9) and hence (Ix,f)(W) is holomorphic in C9),
And according to lemma 6.11, we get

(Il )W) = X[ h) V) Ban s (W) U

(h,g)
JEZ20

- Z (hsy Flsm®p (W),

(h.g)
JEZEU

(h,9)
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Therefore we get

il = [ s W) dusa()

= S (s Dsan-(hw. T)

J, Kez$y®

/C(,,,g) ® a1, (W) @,k (W) dptpa (W)

= Z I(hs, Hlsml>  (by (3.37))

JEZ(’"Q)

>0
If

%’,M < o0,

This proves (I1) and (I2). It is easy to see that Inhy = ®pqy for
all J € Z(Zhdg). Since the set {(bj\,(,_]l J € Zgldg) } forms a complete
orthonormal system of Hg aq, Iaq is surjective. Cbviously the injec-
tivity of a4 follows immediately from the fact that Iy hy = @ M, for
all J € Z(;dg ). This proves (I3).

On the other hand, we let f € Hs aq and g = (A, u, k) € G. We put
¢ = A+ ip. Then we get

(UM (g)(Inaf)) (W)
— 2rio(Mx) | —mo{M(( C+2W £Q)} (IMf)(W + C) (by (344) )

= ) ME WL [ 0w+ f() v
R{k.g)

We define the function 4 : R"9) x R(9) —, C by

(3.48) Ap(U W) = U{M (—UtU - -W~23V— + QU‘W) }

Obviously kp (U, W) = 2 AmUW) for I ¢ R(9) and W e Ch9),
By an easy computation, we get
%9

Am(U,W + () — AU - A\, W) :a{,‘\/i (7 +Wtc‘—ixm+2wm)}.
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Therefore we get

km(U, W + ()
— 2TAMU-AW) | e27ra{M(%th+W"’f—iA At 2iU )}

= k(U = A W) - e2wa{M(§c‘<‘+W‘c’—i,\‘p+2z‘U',‘)}'
Hence we have

(UEM(g)Ipf)) (W)

= [ el ) (0 -\ W) () U
R(h.g)

:/ eZvria{M(n+2)\ 20U - t#)} kM<U W) f(U + A) dU
Rk, g)

= [ e ) o (0) 4 N

= ‘/]R(h‘g) k‘M(U, VV) (US’M(g)f) (U) dU (by (345))

= (I (USM(9)f)) (W).
So far we proved that UFM o Iny = Iy o USM(y) for all g € G. That
is, the unitary isometry Iaq of Hs aq onto Hp s is the intertwining

operator. This completes the proof. 0

The infinitesimal representation dUF*™ associated to the Fock rep-
resentation UM is given as follows.

ProroSITION 3.12. Let M be as before. We put
M=(Mp), @2eM)E = (7)),

where 7y € R and 1 < k,l < h. For each J == (Ji,) € Z(;dg) and
W = (Wie) € C?9) we have

(3.49) dUPM(DY) dps (W) = 2mi My @ pq (W), 1<k <I<h.
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(3.50)

h

dUFM(Dya) @m0 (W) = =2 ( > Mmkaa> P pm,0(W)
m=1
h- 1
+ 3 Tk Pat g e (W),
m=:1

(3.51)

m==1

h
dUFM (D @ pa, s (W) = 2mi (Z Mmleb> O p,0 (W)

1
+ 2 Tml‘]yibq)MJ--ezb(W)'

i™-

3
i
-

Proof. We put E,(c’l = %(Ekl + Ei), where 1 <k <1l < h.

d

AUFM (DY) Bpm (W) = = UM (exptX) Qs (W)
t:=0

d

= USM((0,0,tER)) @ am,5(W)
dt|,

e2mic(CMER) _ 1

= lim @M’J(W)

t—0 t
2rit My I

= lim " B S (W)

t—0 t

= 2m -‘Mkl @M,J(W).
And we have

dUFM(Dia) ®pa,0 (W)

_4 UFM(exptXia) .0 (W)
dt|,_o
d
= — UF'M ((tEkavOaO)) (I)M»J(W)
dtfi—
_ % e~ (MPExa "Era) = 2mto (MW 'Ex) (W + tEjqg)

t=0
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h
= 97 (Z Mmkaa> S, (W)
m=1

+d,
dt

@M'J(W -+ tEka)
0

t=

h
= (Z Mmkaa> B g (W)

m=1
h

1
+ Z Tmk e Pat,7—ena (W)

m=1

Finally,
dUFM(D, P aq, (W)

UFM(exp t Xpp)®pq s (W)

it=0

USM((0,tEp, 0) @ aq, 5 (W)
t=0

5)
d
dt
d
dt
% tzoe—m? o (MEy, *Ey) + 2rit o (MW tE,,) B (W + itEy)

h
= i (Z Mmleb) D0 (W)

m=1

+_

df, ‘PMJ(W + itf‘;lb)

t=0

h

m=1

h
+ 1 Z Tml ngb q)M,J—fmb(W)'
m=1 d
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