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ON CURVATURE PINCHING FOR TOTALLY
REAL SUBMANIFOLDS OF HP"(c)

YOSHIO MATSUYAMA

ABSTRACT. Let S be the Ricci curvature of an n-dimensional com-
pact minimal totally real submanifold M of a quaternion projective
space HP"™(c) of quaternion sectional curvature c. We proved that

if § < QL}E—Q)-C, then either § = "—Zlc (i.e. M is totally geodesic
or S = i(';T"ZZC‘ All compact minimal totally real submanifolds of
HP™(c) satisfy in S = i(';T_Qlc are determined.

1. Introduction

Let HP"(c) be an n—dimensional quaternion projective space with
constant quaternion sectional curvature ¢ (> 0) and let M be an m—di-
mensional totally real submanifold isometrically immersed in HP"(c).
Let h be the second fundamental form of M in HP™(c).

In [4] Funabashi showed: Let M be an n—dimensional totally real
minimal submanifold isometrically immersed in HP™(c). If

n+1

A< T
W < Ten =9y

c

if and only if M is totally geodesic and of constant curvature 1
Recall the totally real imbeddings [4] and [11]:

v RP"(:]Q S HP(1),
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and the first standard imbeddings of projective spaces:

U1 RPY(55) — RPA()
U2 CPA(3) — RPT(2)
Vs HPY(5) ~ RPV()
Ua: CayP2(3) — RP%(3)

Moreover, Houh [6] proved: (A) Let M be an n—dimensional compact
totally real minimal submanifold isometrically immersed in HP"(c).
If the sectional curvature v of M satisfies

n—2

> J—
7= 4@ - n°

then either M is totally geodesic in HP™(c) or n =: 2 and M is flat.
(B) Let M be an m—dimensional compact totally real minimal sub-
manifold isometrically immersed in HP™(c). If the sectional curvature

~v of M satisfies
m—1
Y2

4(2m —1)
then either M is totally geodesic in HP™(¢) or m == 2,n > 4 and M is
the Veronese surface in HP™(c) with positive constant curvature oL

Using the method of Chen and Ogiue [1], we can prove that: (A1)
Let M be an n—dimensional compact totally real minimal submanifold
isometrically tmmersed in HP"(c). If

C

(n+1)
h2 < 2
Ih1" < 4(2n - 1)

C,

then either M is totally geodesic in HP™(2) orn =: 2 and M is flat.
(B1) Let M be an m-dimensional compact totally real minimal sub-
manifold isometrically immersed in HP"(c). If

2

2, M
e —
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then either M is totally geodesic in HP™(c) or m = 2,n > 4 and M is
the Veronese surface in HP"(c) with positive constant curvatrue 5

Recently, Coulton and Gauchman [3] proved the following: Let M
be an m—dimensional compact totally real minimal submanifold iso-
metrically immersed in HP™(c). Then

L)< o
|h(v,v)]* < 3¢
for all unit tangent vector v € T, M if and only if one of the following
conditions is satisfied: a) |h(v,v)|? = 0 and M is totally geodesic,
b) Max {|h(v,v)[?} = &c and M is either congruent to one of the
imbeddings ¢; = v o ; or to the immersion ¥5 = ¥, o 7, where 7 :
S%(5¢0) — RP?%(5c) is the covering map.

Moreover, using the methods of Gauchman (5] and Xia [12], we
can prove that: (A2) Let M be an n—dimensional compact totally real
minimal submanifold isometrically immersed in HP™(c). If n is odd
and

2 n+1

[P(v,v)]* < mcy
then M is totally geodesic. (B2) Let M be an m— dimensional compact
totally real minimal submanifold isometrically immersed in HP™(c). If
m s odd and \ m

|h(v,v)|* < o 8%
the M 1is totally geodesic. (A3) Let M be an n—dimensional compact
totally real minimal submanifold isometrically immersed in HP™(c). If

n+1
6

then either M is totally geodesic or n =2 and M is flat. (B3) Let M
be an m-—dimensional compact totally real minimal submanifold iso-
metrically immersed in HP"(c). ff

|h* < ¢,

m.
hl2 < —¢
|h® < 5

b

then either M is totally geodesic in HP™(c) orm = 2,n > 4 and M is
the Veronese surface in HP™(c) with positive constant curvature <

12°
The purpose of this paper is to prove the following:
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THEOREM 1. Let M be an n—dimensional compact totally real min-
imal submanifold isometrically immersed in HP™(c). Then the Ricci
curvature S of M satisfies

3(n —2)
MET;

C

if and only if the following condition is satisfied: M is totally geodesic
and M is an imbedded submanifold congruent to one of the standard
immbedding i : RP™(§) — HP"(c) or to the standard immersion
iom: S™(§) — HP"(c), where m : S"(§) — RP™(c) orn =2 and M
is flat.

THEOREM 2. Let M be an m-dimensional compact totally real
minimal submanifold isometrically immersed in HP™(c). Then S of
M satisfies L3 0

m— A
SZ(I B (m—f—))c
4 8(2m + 5)
if and only if one of the following conditions is satisfied:

A) S =™=Lc and M is totally geodesic,

B) S = (24 - 83((27;";25)))(: and M is an imb_e_ddt‘*d submanifold con-
gruent to one of the imbeddings ¥, = v o ; or to the immersion
15 = 1) o, where 7 : SQ(—I%C) > 1?P2(11—2c:) is the covering map.

2. Preliminaries

Let M be a differentiable manifold of dimension in, and assume that
there is a 3-dimensional vector bundle V', [7], consisting of tensors of
type (1,1) over M satisfying the following condition: in any coordinate
neighborhood U of M there is a local base {I,./, K} of V called a
canonical local base of V such that

- I’=J°=K?=-Id,
(2.1) 1J=-JI=K,JK=-KJ=LKI=—-IK =J,

where Id denotes the identity tensor field of type (1,1). If Mis a
manifold and V is a bundle over M satisfying the above condition then
(M,V) is called an almost quaternion manifold. If § is a Riemannian
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metric for (M, V) such that §(pX,Y) +g(X,¢Y) = 0, holds for any
cross section o of V, with XY € TM, then /M,V, g) is called an
almost quaternion metric manifold.

Assume that the Riemannian connection V of (M,V,3) satisfies
the following condition: if ¢ is a local cross section of the bundle V',
then Vzp is also a Jocal cross section of V, where X is an arbitrary
vector field. In this case M = (M, V.3) is called a Kaehler quaternion
manifold.

Let ¥ € M and X € TxM. Consider the 4-dimensional subspace
Q(X) in TeM defined by

Q(X) = Spanp{X.IX,JX KX}

We call this the Q—section generated by X. If for allz € M, X € TsM
and Y,Z € Q(X) the sectional curvature o(Y,Z) = ¢ (a constant),
then we say that A is a Kaehler quaternion manifold of constant
@ —sectional curvature c¢. In addition, such a manifold is called a
quaternion space form.

The curvature operator R of a quaternionic space form M = (M,V.3)
has the form:

where c is the (—sectional curvature. It is well known that the quater-
nion projective space H P"(c) is a compact 4n—dimensional quaternion
space form.

Let (M,V,g) be a Kaehler quaternion manifold and let M be a
Riemannian submanifold isometrically immersed in M. We say that
M is a totally real submanifold of M, [4], if

O(T M) LT M

for any * € M, and any 6 € V,, where V,. is the fibre of V over z.
Recall that h is the second fundamental form.
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LEMMA 1. Assume that M is a totally real submanifold of a Kaehler
quaternion manifold. Then

g(W(X,Y),I1Z),g(h(X,Y),JZ) and g(h(X,Y),KZ) are symmetric
with respect to XY and Z € T,M,c € M.

Let M be a compact Riemannian manifold, UM its unit tangent
bundle, and UM, the fibre of UM over a point 2 ¢f M. We denote by
dx,dv and dv, denote the canonical measures on M, UM and UM,
respectively.

For any continuous function f : UM — R, we have

/UM fdv= /M ‘:/UMm fdvg)dz.

If T is a k—covariant tensor on Al and VT is its covariant derivative,
then we have:

m
/ {Z(VT)(ei,e,;,v,n- ,v) }dv =0,
UM 3
where €1, - ,e,, is an orthonormal basis of T, M, z € M.

Now, we suppose that M is an m—dimensional compact Riemannian
manifold isometrically immersed in a Riemannian manifold M. To
simplify notation, we henceforth write g( , ) =<, >. We denote by
<, > the metric of M as well as that induced on M. Let h be the
second fundamental form of the immersion.

Let X.Y,Z and W denote the tangent vector fields on M. Then
if Vh and V2h denote the first and second covariant derivatives of
h. respectively, one has that Vh is symmetric and V2h satisfies the
following relation:

(V2R)(X.Y, 2, W) =(V2h) Y, X, Z, W) + RY (X, Y)h(Z, W)

(2.3) —h(R(X.Y)Z,W) - h(Z.R(X,Y )W),

where R1 and R are the curvature operators of the normal and tangent
bundles over M, respectively.
If S is the Ricci curvature of A and M is minimally immersed in
M, from Gauss equation we have :
m m
(2.4) S(v,w) = ZE(U,ei,eF,w) - Z < Aj(pe)€ir W >,

=1 =1
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where R is the curvature operator of M.

Now let ve UM,,x € M. If e3,--- ,e,, are orthonormal vectors
in UM, orthogonal to v, then we can consider {es, - - ,e,} as an
orthonormal basis of T,,(UM,)}. We remark that {v = ej,eq, -+ ,em}

is an orthonormal basis of T, M. If we denote the Laplacian of UM, =
S™m~1 by A, then Af = egeqf +- - +ememf, where f is a differentiable
function on U M,.

Define a function f; on UM,,x € M, by

Using the minimality of M we can prove that
(Afi)(v) = = 6(m+4)fi(v)

m
-+ SZ < A;,,(U,U)v,Ah(vyei)ei >
=1

+ SZ < Ah(v,v)ei, Ah(g,ei)v >
(2.5) i=1

+ 82 < Ah(v,ei)vah('z,ei)U >

=1
m

+ 2 Z < Ah(v‘v)ei, Ah(’;,u)ei >
i=1

Similarly, define fo, f3, fa, fs, f6, f7, f8, fo and f1y by

‘:Z < Ah(v eV Ah(v e:)V >
1

7

i

f3(’U) = Z Ah(v,ei)vv Ah(v,v)ei >,
i=1
fav) = Z Ah(e»,-,ei)eijh(u,v)ei >,

s

-
il
=
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f5('l)) - Z < Ah(u U)vy Ah(v,ei)ei >,
=1

fG(U) = Z < Ah,(ej,e,-)ej,Ah(u,e,;)?’ >,
t,7=1

f7(U) = Z < Ah(c“v)ei,Ah(v,ej)e_r >,
t,7=1

m

fs(U) :Z < Ah(v,v)eia Ah(v,v)ei >,

1==1

fo(v) =[h(v,v)?,

m

fro(v) =3 < Apgenei, v >,

=1

respectively. Then we know that

(2.6) (Af2)(v) = = 4(m + 2) f2(v) + 46 (v)

4D <A e Anvenes >

2 j=1

+ 2 Z < Ah(e:,v,ei)v’ Ah(ej,ei)v >

%,5=1

m
+ 2 Z < Ah(v,ei)ejaAh(v,ei)ej >,

ij=1
(2.7) (Afs)(v) = —4(m + 2) f3(v) + 2f(v)

+4 Z < Ah,(ej,ei)%Ah(ej v)€i >

1,5=1

m
+4 Z < An(v,e.)€5s An(e; v)Ei >,

2.j=1

(2.8) (Afs)(v) = =2mf4(v),
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(Afs)(v) = —4(m +2)f5(v) + 4f6(v)
+4f7(l’) + 2f4(1)),

m

(2.10) (Afs)(v) = —2mfe(v) +2 Z < An(e;.e:)€5 An(ere) €k >,

7. k=1

m

(2.11) (Af7)(7)) = —-me—;(v) +2 Z < Ah(ej,ei)ej,Ah(ek,e.;)ek >,

i k=1

(2.12) (Afg)(v) = —4(m + 2) fa(v)

+8 Z < Ane; v)€ir An(e; v)€i >

i,5=1

(2.13) (Afo)(v) = —4(m +2) fo(v) + 8 < Ap(ve,)eirv > .
=1
(2.14) (Af10)(v) = —2mfio(v) + 2|h|2.

Then we have the following (See [8] and [9]):

LEMMA 2. Let M be an m—dimensional compact minimal subman-
ifold isometrically immersed in M. Then for all v € M, we have

/ |Ah(v,v)7)|2dvz
UM,

2

(2.15) m
2 <A eq, Ay, > dvg,
T m+2 ,/UMm ; h(v,e:)€is Ah(v,v)V Uz

where {e;}7, Is an orthonormal basis of the tangent space T, M to M
at r.

The following is the well known Chern-Do Carmo-Kobayashi in-
equality (Lemma 1 in [2]):
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LEMMA 3. Under the same assumption of Lemma 2 we have

Un+4XLM&ﬁ@mwf—4lghjﬂvd%

(2.16) 4
—3/ vdvmz-———-/ h|*dv,
UM, fa(v) m(m+2) Jua, 4
Since
1 m m
Eth@&, =3 < (V2h)(es, €i,v,v), h{v,v) >
i=1 i=1
—{—Z < (Vh)(e;,v,v), (Vh)(e;,v,v) >,
i=1
we have

LEMMA 4. Let M be an m—dimensional totally real minimal sub-
manifold isometrically immersed in HP™(c). Then for v € UM, we
have

&m
3 Z (V2 fo)(ei, €5, v Z[ (Vh)(e;,v,v)|% + -—<|h(v v)|?

+22 < Ah(v,’u)eivAh(ei,v)w >
i=1

m
_QZ < Ah(v,ei)ez’a Ah(v,v)’” >

=1

m

- Z < Apwvy€is Anwvy€i >
i=1

+ (< h(v,v),Te; >* + < h(v,v), Je;, >2

c
4
<

=1
+ < h(v,v), Ke; >%)
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3. Proof of theorem 1
Since by (2.4) it holds

n—1

4

n
c - Z < Ah(v,ei)”iyw >,

3==1
we have only to prove Theorem 1 under the assumption of

S(v,w) =

77—|—2

. LU ><
(3.1) L<Ah(ve,e v > 16

2=1

Let v e UM,,x € M. Since M is totally real, the following equations
hold:

n

Z < Ah(t.j,e,»)v,Ah(ej,v)ei >

ij=1
(3.2) -
=Y < An(ien€s Anuiepei >
ij=1
Z < Ah(e_,,ei)vaAh,(ej,ei)U >
(3.3) b=

= Z < Ap(ven€ir An(ve)€) >
i,=1
In terms of (2.5), (2.6), (2.7), (2.8), (2.9), (2.10), (2.11), (2.12), (2.17),
(3.2) and (3.3) we obtain
(3.4)

3 (Voo en) =GOS — g (AR
1 j[ 1
M) (Af3)(v) + o= 3n(n 1 2)( f){v) 4 m(Afs)(v)
_—-—37’7’(”’ + 2) (Afﬁ)(v) + 3n( —[ 2) (Af?)(v) m(AfS)(’U)

- Z (TR) (e 0, 0) + " efo(v)
+ (n+4)f1(v) — 4fs(vi — 2fs(v).
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From (2.15) we get

02/ S (VA es, v, v) v,
(3.5) TUMe =

: 2n
+/UMI(H Z 1Cf9(v) T+ 2f5(”) — 2f3(v))dv,.

Define a self-adjoint operator L : T, M — T, M by Lv = S Ap(v,e,)€4-
If €1, -+ ,e, i1s an orthonormal basis of T, M,z € M, such that Le, =
aye; from (3.1) we have

f5(’l)) =< L,, Ah(v,v)v >

(3.6) ,+ 2
< g -cfo(v)
Since "
fa(v) = lh(v,v)lzg <A hir.w) ei»AT%L_’%%Tei >,
we have
n+ 2
(3.7) fe(v) £ ———cfy(v)

L6
Combining (3.5) and (3.6) with (3.7), we obtain

02/ Vh)(e,,v,v)|%dv,
. > (Vh)( )l

w =1

n+1 n n+2
-I-/ ( c——c— ) fo(v)dv,.
um, 4 8 8

Thus we see that M is a submanifold of HP™(c) with parallel second
fundamental form.

4. Proof of theorem 2
As in the proof of Theorem 1 by (2.4) since it holds

122
)

c— L < Ah(v,ei)ei» w >3
i=1

m—1

S(v,w) =
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we have only to prove Theorem 2 under the assumption of

“ 3(m+ 2)
. €, < .
(4.1) Z < Apueyei, v >< 8(2m 1 5)c

i=1]

Let ve UM;,x € M. Since M is totally real, in this case the following
equations also hold:

Z < Ah("; yei)v!Ah(ej,v)ez’ >
(4.2) ’J:
= Z < Ah("’aei)ej7Ah('u,ej)ev >,
ig=1
Z < Ah(rj,ei)U,Ah(ej,ei)v >
(4.3) ”J;l
= Z < Ah("rei)ej’Ah(U,ei)e] >,
ij=1
(4.4)
LS (P o) ensernt) = AR~z (AR))
24 O 6 ' 3(m +2) g
1 1 1 |
w5y AW + g (A )+ G (Af)(0)
1 1 i
- m(Afs)(v) T (Afr)(v) + mmfg)(v)

Il
.Ms

i
—

(VA (er,v,0)[* + Frefov) + (m -+ 4) fi(v) = 4fs5(v) - 2fa(v)

K3

+ (< h(v,v), Te; >% + < h(v,v), Je; >% 4 < h(v,v), Ke; >2).

v

—

c
4

1=z
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Integrating (4.4) and multiplying it by %, we have

3/ = ) 3m /
0== Vh)(ei,v,v)|*dv, + —c fa(v)dv,
D SIS L

=1

3

+§@wwnzm.ﬁ@m%—6'1 ﬁwﬂwm3/ fs(v)d,

2 1T M, UM,

3 f m . .
+§C/ > (< h(v,v), e, 5% + < h(v,v), Je, >*
UM,

r =1

+ < h{v,v), Ke; >2)dvx.

Using (2.16), we get
(4.5)
3m

3/ ™m 2 /
0>= Vh)(e;, v, v)|*dv, + —c fo(0)dvy
3 o, NP+ B [ )

T 3=1

1 4
+=(m+4 / fi(v)dv, — 2/ fs(v)dv, — ——~———/ hl*dv,
2( ) UM, ! UM, #(0) m(m +2) UM, y

30/ u“ 9 9
+— (< h(v,v),ITe; >° + < h(v,v), Je;, >
8 Jum 2

@ =]

+ < h(v,v), Ke; >%)dv,.

From (2.15) we know that

l(m +4) fi(v)dv, — 2/ fs(v)dv,
(4.6) 2 UM, UM,
—m
= m+2 fum, s(w)dvs.
By means of (4.1) we obtain
3(m+2) 9
(4.7) fs(v) < 8(2m+gjc[h‘(v,v)[ ,

2 < Smlm +2)

(48) S 8@m 1)

C.
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Combining (4.5), (4.6) and (4.7) with (4.8), we have

0 Zg/UM Z[(Vh)(ei,v.,vﬂzdvz+3?mC/UMI fo(v)dv;

T 3=1

3am

12
__om oy — ——2 h2du,
*82m 1 5) /UM, fo(v)dv 8(2m + 5) /UM, [hl*dv

3 m
+‘£/ Z(< h(v,v). Ie; >* + < h(v,v), Je; >2
8 Jum. i3
+ < h(v,v), Ke; >%)dv,.
Noting (2.13) and (2.14), we get

42
/ h|2dv, = Tﬁff—l/ Ih(v, v)|2dv,.
UM, 2 UM,

Hence,

3 = 9
025/, > 1(Vh)(es, v,v)Pdv,,

M =1

3c = ,
+—£/ (< h{v,v), Ie; >% + < hiv,v), Je; >2
8 Jum, i

+ < h(v,v), Ke; >%)dv,.

This proves Theorem 2.
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