Ri-SETS AND CONTRACTIBILITY

BONG SIN BAIK, KUL HUR AND CHOON JAI RHEE

ABSTRACT. We introduce R^i -sets and give various relations between R^i -sets and prove that the hyperspace of a metric continuum containing any one of the R^i -sets also contains R^i -set and hence is not contractible.

1. Introduction

In 1980 Czuba [4] introduced three types of R^i -continua (i = 1, 2, 3) in the class of dendroids, and proved that any dendroid containing any one of the R^i -continua is not contractible. In 1986 Charatonik [2] claimed to have extended Czuba's results to the class of metric continua and also to have attempted to prove that the hyperspaces of a metric continuum containing an R^i -continuum also contains a certain R^i -continuum. In this paper we introduce R^i -sets and give various relations between R^i -sets and prove that the hyperspace of a metric continuum containing any one of the R^i -sets also contains R^i -set and hence is not contractible.

2. R^i -sets

By a continuum we mean a compact connected metric space. For a metric space (X,d) and $A \subset X$ and $\epsilon > 0$, let $N(A,\epsilon) = \{x \in X : d(a,x) < \epsilon \text{ for some } a \in A\}$. Let 2^X be the collection of all nonempty closed subsets of X, and let C(X) be the collection of all subcontinua of X. Then $C(X) \subset 2^X$. The Hausdorff metric for 2^X is given by $H(A,B) = \inf\{\epsilon > 0 : A \subset N(B,\epsilon) \text{ and } B \subset N(A,\epsilon)\}$ for $A,B \in 2^X$.

DEFINITION 2.1. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of subsets of a space X. Limit superior of the sequence is the set, denoted by LsX_n , of all points

Received July 7, 1995.

¹⁹⁹¹ Mathematics Subject Classification: 54B20.

Key words and phrases: hyperspace, R^{i} -continuum, R^{i} -set, contractibility.

 $x \in X$ such that each neighborhood of x intersects infinitely many X_n . The *limit inferior* of the sequence is defined to be the set, denoted by LiX_n , of all points $x \in X$ such that each neighborhood of x intersects all but a finite number of X_n . If $LsX_n = LiX_n$, then the *limit* of the sequence to be $LtX_n = LiX_n$, and we say that the sequence $\{X_n\}_{n=1}^{\infty}$ converges to LtX_n .

DEFINITION 2.2. A nonempty closed proper subset K of a continuum X is called ;

an R^1 -set if there exist an open set U containing K and two sequences $\{C_n^i\}_{n=1}^{\infty}$, i=1,2, of components of U such that $K:=LsC_n^1\cap LsC_n^2$, an R^2 -set if there exist an open set U containing K and two sequences $\{C_n^i\}_{n=1}^{\infty}$, i=1,2, of components of U such that $K:=LtC_n^1\cap LtC_n^2$, an R^3 -set if there exist an open set U and a sequence $\{C_n\}_{n=1}^{\infty}$ of components of U such that $K=LiC_n$.

THEOREM 2.3. Every R^2 -set is both an R^1 and R^3 -set.

Proof. Let $K = LtC_n^1 \cap LtC_n^2 \subset U$ be an R^2 -set. Then, by definition, we have $LsC_n^i = LtC_n^i$ for each i = 1, 2. Hence K is an R^1 -set. For each natural number n, let $D_{2n+1} = C_n^1$ and $D_{2n} = C_n^2$. Then it is easy to see that $K = LiD_n$. Hence K is also an R^3 -set.

THEOREM 2.4. Every R^1 -set contains an R^2 -set.

Proof. Let $K = LsC_n^1 \cap LsC_n^2 \subset U$ be an R^1 -set. Let $x \in K$. Then there exist two convergent subsequences $\{C_{n_k}^i\}_{k=1}^\infty$ of $\{C_n^i\}_{n=1}^\infty$, i=1,2, such that $x \in LtC_{n_k}^1 \cap LtC_{n_k}^2$. Since $LtC_{n_k}^i \subset LsC_n^i$ for each $i,K' = LtC_{n_k}^1 \cap LtC_{n_k}^2$ is a nonempty closed subset of K. Hence K' is an R^2 -set.

The following is an immediate consequence of Theorem 2.3 and Theorem 2.4.

COROLLARY 2.5. Every R^1 -set contains an R^3 -set.

We give examples of spaces with R^i -sets which show that R^i -sets are distinct. We denote the line segment between two points p and q in a Euclidean space by pq.

EXAMPLE A. There is a disconnected R^1 -set which is not an R^3 -set: Let $S = \{(x,y) : x^2 + y^2 = (\frac{1}{2})^2, x \geq 0\}, a = (0,1), u = (0,\frac{3}{4}), v = (0,\frac{1}{2}), and <math>p = (1,0)$. For each natural number n, let $a_n = (\frac{1}{n+3}, \frac{n+5}{n+6}),$

 $\begin{array}{l} b_n=(\frac{n+5}{2n+6},\frac{1}{n+3}),\ p_n=(\frac{n+4}{n+3},0),\ c_n=(\frac{n+5}{2n+6},-\frac{1}{n+3}),\ d_n=(\frac{1}{n+3},-\frac{n+5}{2n+6}),\\ f_n=(\frac{1}{n+3},-\frac{3}{4}).\ D_n=\{(x,y):x^2+y^2=(\frac{1}{n+3})^2+(\frac{n+5}{2n+6})^2,\ \frac{1}{n+3}\leq x\leq \frac{n+5}{2n+6},y\geq 0\},\ \text{and}\ E_n=\{(x,y):x^2+y^2=(\frac{1}{n+3})^2+(\frac{n+5}{2n+6})^2,\ \frac{1}{n+3}\leq x\leq \frac{n+5}{2n+6},y\leq 0\}.\ \text{Let}\ Y_1=S\cup av\cup(\bigcup_{n=1}^{\infty}(aa_n\cup D_n\cup b_np_n\cup p_nc_n\cup E_n\cup d_nf_n)),\\ \text{and let}\ Y_2\ \text{be the image of}\ Y_1\ \text{under the symmetry map s with respect to the origin, and let $X=Y_1\cup Y_2$. Then X is a continuum. } \end{array}$

Let $U = X \setminus \{a, s(a)\}$, and let, for each natural number n, C_n^1 be the component of U containing p_n , and C_n^2 the component of U containing $s(p_n)$. Then $K = LtC_n^1 \cap LtC_n^2$ is the union of the segments uv and s(u)s(v).

Let $U' = \{(x,y) \in X : -\frac{9}{10} < x < \frac{9}{10} \text{ and } -\frac{9}{10} < y < \frac{9}{10}\}$. Let, for each natural number n, C_{2n+1}^1 be the component of U' containing a_n , C_{2n}^1 the component of U' containing c_n , C_{2n+1}^2 the component of U' containing $s(a_n)$, and C_{2n}^2 the component of U' containing $s(c_n)$. Then $K = LsC_n^1 \cap LsC_n^2 = uv \cup s(u)s(v)$ is an R^1 -set. But one can see that K is not an R^3 -set.

EXAMPLE B. There is a disconnected R^3 -set which is not R^1 -set: First we define two continua A and B in the plane. Then we attach these two in certain way to get our space X.

Let $p_1 = (0,2)$, $p_2 = (0,1)$, $p_3 = (0,0)$, $p_4 = (-1,0)$, and $p_5 = (1,0)$. For each natural number n, let $a_n = (-\frac{1}{n}, \frac{1}{n})$, $b_n = (-1, \frac{1}{n})$, $c_n = (\frac{1}{n}, \frac{1}{n})$, and $d_n = (1, \frac{1}{n})$. We put $A = p_1 p_3 \cup p_4 p_5 \cup (\bigcup_{n=1}^{\infty} (p_1 a_n \cup p_2 a_n))$

 $a_nb_n))\cup(\bigcup_{n=1}^{\infty}(p_1c_n\cup c_nd_n))$ (Fig.1). For the continuum B, let $q_i=p_i$, for each $i\in\{2,3,4,5\}$. Let, for each natural number n, $e_n=(-\frac{1}{n},\frac{1}{n})$, $f_n=(0,1+\frac{1}{n}),\ g_n=(\frac{1}{n},\frac{1}{n})$ and $h_n=(1,\frac{1}{n})$. We put $B=q_2q_3\cup q_4q_5\cup(\bigcup_{n=1}^{\infty}(q_4e_n\cup e_nf_n\cup f_ng_n\cup g_nh_n))$ (Fig.2). Let $p_6=q_6=(0,\frac{3}{4})$ and $p_7=q_7=(0,\frac{1}{4})$. Let $f:A\times\{0\}\longrightarrow B\times\{1\}$ be the attaching map such that $f:(p_4p_5\cup p_2p_6\cup p_7p_3)\times\{0\}\longrightarrow (q_4q_5\cup q_2q_6\cup q_7q_3)\times\{1\}$ is given by f(x,0)=(x,1). Let $X=(A\times\{0\})\cup_f(B\times\{1\})$. Then X is a continuum. We let $U=X\setminus\{(p_1,0),(q_4,1)\}$. Then U is an open set. Let, for each natural number n, C_{3n+2} be the component of U containing $(a_n,0)$, C_{3n+1} the component of U containing $(c_n,0)$, and C_{3n} the component of U containing $(e_n,1)$. Then we can see that $LiC_n=f((p_2p_6\cup p_7p_3)\times\{0\})=(q_2q_6\cup q_7q_3)\times\{1\}$ is the union of two disjoint arcs q_2q_6 and q_7q_3 , which is R^3 -set but not an R^1 -set.

EXAMPLE C There is a disconnected set which is both an R^1 and R^3 -set but not an R^2 -set: Let Y be the space in EXAMPLE 4 of [4](see Fig.3).

Fig. 3.

Let $b_n', c_n', d_n', e_n', a', e'$ denote the points in Y which are images of b_n, c_n, d_n, e_n, a, e under the symmetry map with respect to the origin respectively. Let X be the space in the above Example B. Let $d' = (0, \frac{1}{4})$ and $d = (0, -\frac{1}{4})$. Let $g : (ed \cup e'd') \times \{0\} \longrightarrow X \times \{1\}$ be the attaching map defined by $g(0, x, 0) = (0, x + \frac{1}{2}, 1)$. Let $Z = (Y \times \{0\}) \bigcup_g (X \times \{1\})$. Then Z is a continuum. Let $U = \{(x, y, 0) \in Z : -\frac{9}{10} < x < \frac{9}{10}, -\frac{9}{10} < x < \frac{9}{10}\}$

 $y < \frac{9}{10} \} \cup ((X \times \{1\}) \setminus \{(p_1, 0, 1), (q_4, 1, 1)\})$. Then U is an open set in Z. Let, for each natural number n, C_n^1 be the component of U containing the point $(e_n, 1, 1)$, C_{2n}^2 the component of U containing the point $(b_n', 0)$, and C_{2n+1}^2 the component of U containing the point $(d_n', 0)$. Then the image of the union of the arcs ed and e'd' is an R^1 -set.

On the other hand, if we let C_{3n+2} be the component of U containing $(e_n, 1, 1)$, C_{3n+1} the component of U containing $(a_n, 0, 1)$, and C_{3n} the component of U containing $(c_n, 0, 1)$ for each natural number n, then the image $ed \cup e'd'$ of the disjoint two arcs ed and e'd' is the R^3 -set, which is clearly not an R^2 -set.

Example C in [16] (see Fig. 4).

Fig. 4

As noted, this space contains \mathbb{R}^1 -continuum which is neither \mathbb{R}^2 -continuum nor \mathbb{R}^3 -continuum.

We shall find all R^i -sets of X with respect to an open set U and all its components. Let f be a map defined by f(x, y, z) = (-y, x, z+1) for each $(x, y, z) \in X_0$. Let f^0 be the identity, $f^1 = f$, $f^2 = f \circ f$ and $f^3 = f^2 \circ f$.

Let $U = X \setminus \{f^0(a), f^1(a), f^2(a), f^3(a)\}$. For each natural number n and each $i \in \{0, 1, 2, 3\}$, let C_n^i be the component of U containing the point $f^i(p_n^+)$. Let $b_0 = (1, 0, 0), b_1 = (0, 1, 0), b_2 = (-1, 0, 0)$ and $b_3 = (0, -1, 0)$.

We will adopt the following notations: Let $E(i) = \{C_n^i\}_{n=1}^{\infty}$, $LsE(i) = LsC_n^i$ and $LiE(i) = LiC_n^i$ for each $i \in \{0, 1, 2, 3\}$. For $0 \le i$, j, $k \le 3$, let $E(i,j) = \{D_n\}_{n=1}^{\infty}$ be the sequence obtained by $D_{2n+1} = C_n^i$ and $D_{2n} = C_n^j$ for each natural number n, and let $E(i,j,k) = \{F_n\}_{n=1}^{\infty}$ be the sequence formed by $F_{3n+2} = C_n^i$, $F_{3n+1} = C_n^j$ and $F_{3n} = C_n^k$ for each natural number n. Since each E(i) converges, for each i,j we have LsE(i,j) = LsE(j,i), LiE(i,j) = LiE(j,i), and LsE(i,j,k) equals the limit superior of E of any rearrangement of i,j,k. Similarly LiE(i,j,k) equals the inferior of E of any rearrangement of i,j,k.

We find LsE(i) for each i: Notice that LsE(i) = LiE(i) for each i. $LtE(0) = LtC_n^0 = r_0q_0 \cup q_0t_0 \cup t_0s_0 \cup b_0f^0(a)$, $LtE(1) = LtC_n^1 = s_0r_0 \cup r_0q_0 \cup q_0t_0 \cup b_1f(a)$, $LtE(2) = LtC_n^2 = q_0r_0 \cup r_0s_0 \cup s_0t_0 \cup b_2f^2(a)$, and $LtE(3) = LtC_n^3 = r_0s_0 \cup s_0t_0 \cup t_0q_0 \cup b_3f^3(a)$. And none of these limiting sets are an R^i -set.

Let us find $LsE(i) \cap LsE(j) : K_1 = LsE(0) \cap LsE(1) = r_0q_0 \cup q_0t_0 \cup \{s_0\}, K_2 = LsE(1) \cap LsE(2) = q_0r_0 \cup r_0s_0 \cup \{t_0\}, K_3 = LsE(2) \cap LsE(3) = r_0s_0 \cup s_0t_0 \cup \{q_0\}, K_4 = LsE(3) \cap LsE(0) := s_0t_0 \cup t_0q_0 \cup \{r_0\}, K_5 = LsE(0) \cap LsE(2) = q_0r_0 \cup s_0t_0, \text{ and } K_6 = LsE(1) \cap LsE(3) = r_0s_0 \cup q_0t_0.$ All of these sets are R^1 -sets, and none of them are connected.

We compute $LiE(i,j): LiE(0,1) = LtE(0) \cap LtE(1) = K_1$, $LiE(1,2) = LtE(1) \cap LtE(2) = K_2$, $LiE(2,3) = LtE(2) \cap LtE(3) = K_3$, $LiE(3,0) = LtE(3) \cap LtE(0) = K_4$, $LiE(0,2) = LtE(0) \cap LtE(2) = K_5$, and $LiE(1,3) = LtE(1) \cap LtE(3) = K_6$.

Observe that $LsE(i,j) = LsE(i) \cup LsE(j)$ for each i and j. Similarly $LsE(i,j,k) = LsE(i) \cup LsE(j) \cup LsE(k)$.

We now compute $LiE(i,j,k): LiE(i,j,k) = LiE(i) \cap LiE(j) \cap LiE(k)$ so that $LiE(0,1,2) = q_0r_0 \cup \{s_0,t_0\} = K_7, LiE(1,2,3) = r_0s_0 \cup \{q_0,t_0\} = K_8, LiE(2,3,0) = s_0t_0 \cup \{q_0,r_0\} = K_9, LiE(3,0,1) = q_0t_0 \cup \{r_0,s_0\} = K_{10}$. All of these are R^3 -sets. None of them are connected.

 $LiE(0,1,2,3) = \{q_0, r_0, s_0, t_0\} = K_{11}$, which is an R^3 -set.

We compute $LsE(i,j) \cap LsE(k)$: Since $LsE(i,j) \cap LsE(i) = LsE(i)$ for all i,j,k and for each fixed k, $LsE(i,j) \cap LsE(k) = LsE(i',j') \cap LsE(k)$ for $k \neq i,i',j,j'$, we have only four types: $K_{12} = LsE(0,1) \cap LsE(2) = q_0r_0 \cup r_0s_0 \cup s_0t_0$, $K_{13} = LsE(0,1) \cap LsE(3) = r_0s_0 \cup s_0t_0 \cup t_0q_0$,

 $K_{14} = LsE(0,2) \cap LsE(1) = s_0r_0 \cup r_0q_0 \cup q_0t_0$, $K_{15} = LsE(1,3) \cap LsE(0) = r_0q_0 \cup q_0t_0 \cup t_0s_0$. These are all R^1 -continua.

Here we note that $LiE(i,j) \neq LsE(i,j)$ for all $i \neq j$.

Let us compute $LsE(i,j) \cap LsE(i',j')$: There is only one type. $K_{16} = LsE(0,1) \cap LsE(2,3) = LsE(0,2) \cap LsE(1,3) = LsE(0,3) \cap LsE(1,2) = S_0$. If, for any two sequences E(i,j) and E(i',j') such that $i \neq j$, $i \in \{i',j'\}$ or $j \in \{i',j'\}$, then $LsE(i,j) \cap LsE(i',j')$ is not an R^i -set. K_{15} is an R^1 -continuum, and one can easily see that it is neither an R^2 -continuum nor an R^3 -continuum.

Finally we consider $LsE(i, j, k) \cap LsE(i', j')$ and $LsE(i, j, k) \cap LsE(i', j', k')$. None of these are R^i -sets. Since there are no other R^i -set of X, $\{K_n : n = 1, 2, 3, ..., 16\}$ is the collection of all R^i -sets of X. We note that for a disconnected R^i -set K_n , no component of K_n is an R^i -continuum.

3. Noncontractibility in hyperspaces

DEFINITION 3.1. [1] A nonempty subset A of a space X is said to be homotopically fixed if, for every deformation $h: X \times [0,1] \longrightarrow X$, we have $h(A \times [0,1]) \subset A$.

Clearly if a space contains a subset which is homotopically fixed, it is not contractible.

The next theorem is a generalization of Czuba's Theorem 3 in [3] which was given for the class of dendroids containing R^{i} -continuum. Our proof is almost identical with that of Czuba.

THEOREM 3.2. If a continuum X contains an R^i -set K, then K is homotopically fixed.

Proof. Let $K = LsC_n^1 \cap LsC_n^2 \subset U$ be an R^1 -set, where $U = N(K, \epsilon)$ is an ϵ -neighborhood of K and C_n^i are components of U. Suppose, on the contrary, that there exists a deformation $h: X \times [0,1] \longrightarrow X$ for which $h(K \times [0,1]) \setminus K \neq \emptyset$, i.e., for which there exists a number $t' \in [0,1]$ with the condition (*) $h(K \times \{t'\}) \setminus K \neq \emptyset$.

First we show that there are $t_0 > 0$ such that $h(K \times [0, t_0]) \subset N(K, \frac{\epsilon}{2})$ and $(p_0, t') \in K \times [0, t_0]$ such that $h(p_0, t') = q \in X \setminus K$. For each point $p \in K$, let $t_p = \sup\{t \in [0, 1] : h(\{p\} \times [0, t]) \subset N(K, \frac{\epsilon}{2})\}$, and let $t_0 = \inf\{t_p : p \in K\}$. We claim that $t_0 > 0$. In fact, suppose $t_0 = 0$. Then there is a sequence $\{p_n\}_{n=1}^{\infty}$ of points of K such

that the sequence $\{t_{p_n}\}_{n=1}^{\infty}$ of corresponding numbers contains a subsequence $\{t_{p_{n_k}}\}_{k=1}^{\infty}$ which converges to zero. It follows from the compactness of K that the sequence $\{p_n\}_{n=1}^{\infty}$ contains a subsequence $\{p_{n_k}\}_{k=1}^{\infty}$ which converges to $p_0 \in K$. Hence by the definition of t_0 if $t_p < 1$, then $h(p,t_p) \in Fr(N(K,\frac{\epsilon}{2}))$. Since the sequence $\{t_{p_{n_k}}\}_{k=1}^{\infty}$ converges to zero as a subsequence of $\{t_{p_n}\}_{n=1}^{\infty}$, we may assume that $t_{p_{n_k}} < 1$ for sufficiently large k, and hence $h(p_{n_k},t_{p_{n_k}}) \in Fr(N(K,\frac{\epsilon}{2}))$. Since the map h is continuous and the set $Fr(N(K,\frac{\epsilon}{2}))$ is closed, we conclude that $h(p_0,0) \in Fr(N(K,\frac{\epsilon}{2}))$. But since h is a deformation we have $h(p_0,0) = p_0$, whence $p_0 \in Fr(N(K,\frac{\epsilon}{2}))$. which contradicts $p_0 \in K$. Thus the inequality $t_0 > 0$ is established. It follows now from the definition of t_0 that $h(K \times [0,t_0]) \subset \overline{N(K,\frac{\epsilon}{2})}$.

Secondly we claim that there is a number $t' \in [0, t_0]$ such that the condition (*) is satisfied. To see it, if $t_0 = 1$, then $h(K \times [0,1]) \subset N(K, \frac{\epsilon}{2})$ so that there exists $t' \in [0, 1]$ such that (*) is satisfied. Therefore, there exists $p_0 \in K$ such that $h(p_0, t') = q \in \overline{N(K, \frac{\epsilon}{2})} \cap (X \setminus K)$. If $t_0 < 1$, then we take $t'=t_0$. Then there exists a sequence $\{p_n\}_{n=1}^{\infty}$ of points of K such that $t_0 < t_{p_n} < 1$ and $t_0 = \lim_{n \to \infty} t_{p_n}$. As before, let $\{p_{n_k}\}_{k=1}^{\infty}$ be a subsequence of $\{p_n\}_{n=1}^{\infty}$ which converges to $p_0 \in K$. Applying once more the same arguments as above, we get $h(p_{n_k}, t_{p_{n_k}}) \in Fr(N(K, \frac{\epsilon}{2}))$ for almost all k. Hence $h(p_0,t_0)\in Fr(N(K,rac{\epsilon}{2}))$ and thus the point $h(p_0,t_0) \notin K$. So let $t' \in [0,t_0]$ be any number such that the condition (*) holds and let $p_0 \in K$ such that $h(p_0, t') \notin K$. Put $h(p_0, t') = q$ and define $t'_0 = \inf\{t' \in [0, t_0] : h(p_0, t') = q\}$. Then by the continuity of h, we have (**) $h(p_0,t_0')=q\in X\setminus K$. Now let K be an R^1 -set and $p_0 \in K$ and $t'_0 \in [0, t']$ which satisfy the condition (**). Let $\{p_n^i\}_{n=1}^{\infty}, p_n^i \in K$ $C_{k_n}^i, i=1,2$, be sequences such that $\lim_{n\to\infty} p_n^i=p_0$, for such i=1,2. Let $q_n^i = h(p_n^i, t_0^i)$ for i = 1, 2. Then $\lim_{n \to \infty} q_n^i = q$ for each i = 1, 2. By the definitions of q and q_n^i , $d(q,K) < \frac{\epsilon}{2}$ for sufficiently large n for each i = 1, 2. By the continuity of h and by the connectedness of the sets $\{p_n^i\} \times [0, t_0'], i = 1, 2$, the sets $h(p_n^i, [0, t_0']), i = 1, 2$, are connected and $Lt(h(\{p_n^i\} \times [0,t_0'])) = h(\{p_0\} \times [0,t_0']) \subset \overline{N(K,\frac{\epsilon}{2})}, \text{ for } i = 1,2. \text{ So for a}$ sufficiently large $n, h(\{p_n^i\} \times [0, t_0^i]) \subset N(K, \epsilon)$. Since $p_n^i = h(p_n^i, 0) \in C_{k_n}^i$ and $h(\{p_n^i\} \times [0,t_0'])$ is a connected subset of $N(K,\epsilon), q_n^i \in C_{k_n}^i$ and $q = \lim_{n \to \infty} q_n^i \in K$, but $q \in X \setminus K$. This is a contradiction. This proves the theorem for R^1 -set.

We can also prove similarly that it is true for other R^{i} -set.

COROLLARY 3.3. If a metric continuum contains an R^{i} -set, then it is not contractible.

We prove next that if a metric continuum contains an \mathbb{R}^i -set, so do its hyperspaces.

For a subset D of X, let $C(D) = \{A \in C(X) : A \subset D\}$ and $2^D = \{A \in 2^X : A \subset D\}$.

The following Lemma is already known.

LEMMA 3.4. If \mathcal{D} is a connected subset of 2^X such that $\mathcal{D} \cap C(X) \neq \emptyset$, then $\cup \mathcal{D}$ is connected. In particular, if \mathcal{D} is a connected subset of C(X), then $\cup \mathcal{D}$ is connected.

LEMMA 3.5. Let X be a metric continuum. Let U be an open set in X and let C be a component of U. Then $2^U = \{A \in 2^X : A \subset U\}$ is open in 2^X and $2^C = \{A \in 2^X : A \subset C\}$ is a component of 2^U . Also $C(U) = \{A \in C(X) : A \subset U\}$ is open in the space C(X) and $C(C) = \{A \in C(X) : A \subset C\}$ is a component of C(U).

Proof. Let $A \in 2^U$. Since $A \subset U$, there is an $\epsilon > 0$ such that the ϵ -neighborhood $N(A, \epsilon)$ of A is contained in U. Let \mathcal{O} be the ϵ -neighborhood of A in 2^X . Then for each $B \in \mathcal{O}$ we have $B \subset N(A, \epsilon)$ so that $B \in 2^U$. Hence 2^U is open in 2^X . In similar manner, one can show that C(U) is open in C(X).

First we show that C(C) is connected. Let $C^* = \{\{x\} : x \in C\}$. Then C and C^* are homeomorphic and $C^* \subset C(C)$. Let $A \in C(C)$ and $a \in A$. Let α_A be an order arc by (1.11) in [9] from $\{x\}$ to A. Then $\alpha_A \subset C(C)$. And $C(C) = \cup \{\alpha_A : A \in C(C)\} \cup C^*$ is connected. Now let \mathcal{C} be the component of C(U) containing C(C). Let $A \in \mathcal{C}$. Since $\cup \mathcal{C}$ is a connected subset of U by the above Lemma which contains C and C being a component of U, $A \subset \cup \mathcal{C} = C$. So that $A \in C(C)$. This shows that C(C) is C.

In order to show that 2^C is a component of 2^U , we use the connectedness of 2^C by Theorem 4.10 in [8]. So if \mathcal{D} is the component of 2^U containing 2^C and $A \in \mathcal{D}$, then $\cup 2^C$ is connected subset of U by the above Lemma and hence $\cup \mathcal{D} \subset C$. Therefore $A \subset \cup \mathcal{D}$ implies that $A \in 2^C$. 2^C is a component of 2^U .

THEOREM 3.6. If a continuum X contains an R^i -set, then 2^X contains an R^i -set for each $i \in \{1, 2, 3\}$.

Proof. Let $K = LsC_n^1 \cap LsC_n^2 \subset U$ be an R^1 -set, where U is an open set and C_n^i are components of U. Then 2^U is an open set in 2^X and $2^{C_n^i}$ are components of 2^U for each i = 1, 2. Let $\mathcal{K} = Ls2^{C_n^1} \cap Ls2^{C_n^2}$. Since $\{x\} \in \mathcal{K}$ for each $x \in K$, \mathcal{K} is nonempty. Also it is closed. Since each $A \in \mathcal{K}$ is a closed subset of K, $\mathcal{K} \subset 2^U$. Hence it is an R^1 -set.

If K is an \mathbb{R}^2 -set, then K defined as above is an \mathbb{R}^1 -set and thus 2^X contains an \mathbb{R}^2 -set by Theorem 2.4.

If
$$K = LiC_n \subset U$$
 is an \mathbb{R}^3 -set, then $\mathcal{K} = Li2^{C_n}$ is an \mathbb{R}^3 -set.

THEOREM 3.7. If a metric continuum X contains an R^i -set, $i \in \{1,2,3\}$, then C(X) contains an R^i -set for $i \in \{1,2,3\}$, respectively.

Proof. Let $K = LsC_n^1 \cap LsC_n^2 \subset U$ be an R^1 -set of X. Then $C(C_n^i)$ are components of C(U). Let $\mathcal{K} = LsC(C_n^1) \cap LsC(C_n^2)$. Then $K^* = \{\{x\} : x \in K\} \subset \mathcal{K}$ and \mathcal{K} is closed. Let $A \in \mathcal{K}$ and let $\{A_{n_j}^i\}$, $A_{n_j}^i \in C(C_{n_j}^i), i = 1, 2$, be sequences such that $\lim_{j \to \infty} A_{n_j}^i = A$, for each i = 1, 2. Then $A \subset K$ so that $A \in C(U)$. Hence $\mathcal{K} \subset C(U)$. It is an R^1 -set of C(X). The proofs for other R^i -set are similar.

COROLLARY 3.8. If a metric continuum X contains an R^{i} -set, then 2^{X} and C(X) are not contractible.

References

- J. J. Charatonik and Z. Grabowski, Homotopically fixed arcs and the contractibility of dendroids, Fund. Math. 100 (1978), 229–237.
- [2] W. J. Charatonik, Rⁱ-continua and hyperspaces, Topology and its Applications 23 (1986), 207–216.
- [3] S. T. Czuba, R-continua and contractibility of dendroids, Bull. Acad. Polon. Sci., Ser. Sci. Math. 27 (1979), 299–302.
- [4] _____, Rⁱ-continua and contractibility, Proc. of the International Conference on Geometric Topology, PWN-Polish Scientific Publishers, Warszawa 1980, 75–79.
- [5] H. Kato, A note on continuous mappings and the property of J. L. Kelley, Proc. Amer. Math. Soc. 112 (1991), 1143-1148.
- [6] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
- [7] K. Kuratowski, Topology, I, Academic Press, New York, N.Y., 1966.
- [8] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.
- [9] S. B. Nadler, Jr., Hyperspaces of sets, Marcel Dekker, Inc., New York, 1978.
- [10] _____, Continuum theory, Marcel Dekker, Inc., New York, 1992.
- [11] T. Nishiura and C. J. Rhee, The hyperspace of a pseudoare is a Cantor manifold, Proc. Amer. Math. Soc., **31** (1972), 550-556.

- [12] _____, Cut points of X and the hyperspace of subcontinua C(X), Proc. Amer. Math. Soc., 82 (1981), 149-154.
- [13] C. J. Rhee, On dimension of hyperspace of a metric continuum, Bull. Soc. Royal Sci. Liege 38 (1969), 602-604.
- [14] _____, Obstructing sets for hyperspace contraction, Topology Proc. 10 (1985), 159-173.
- [15] C. J. Rhee and K. Hur, On spaces without Rⁱ-continua, Bull. Korean Math. Soc. 30 (1993), 295-299.
- [16] C. J. Rhee, I. S. Kim, and R. S. Kim, W-regular convergence of Rⁱ-continua, Bull. Korean Math. Soc. 31 (1994), 105-113.
- [17] C. J. Rhee and T. Nishiura, An admissible condition for contractible hyperspaces, Topology Proc. 8 (1983), 303-314.
- [18] R. W. Wardle, On a property of J. L. Kelley, Houston J. Math. 3 (1977), 291-299.
- [19] H. Whitney, Regular families of curves, Annals of Math. 34 (1933), 244-270.
- [20] G. T. Whyburn, Analytic topology. Amer. Math. Soc. Colloq. Publications 28, 1942.

Bong Sin Baik Department of Mathematics Education Woo-Suk University Chonbuk 565-701, Korea

Kul Hur Department of Mathematics Won-Kwang University Iksan 570-749, Korea

Choon Jai Rhee Department of Mathematics Wayne State University Detroit, Michigan 48202, U.S.A.