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R-SETS AND CONTRACTIBILITY
Bona SIN Baik, KuL HUR AND CHOON JAlI RHEE

ABSTRACT. We introduce R'-sets and give various relations between
Ri-sets and prove that the hyperspace of a metric continuum con-
taining any one of the Ri-sets also contains Ri-set and hence is not
contractible.

1. Introduction

In 1980 Czuba [4] introduced three types of R*-continua (i = 1,2,3) in
the class of dendroids, and proved that any dendroid containing any one
of the R’-continua is not contractible. In 1986 Charatonik [2] claimed to
have extended Czuba’s results to the class of metric continua and also
to have attempted to prove that the hyperspaces of a metric continuum
containing an R'-continuum also contains a certain R'-continuum. In
this paper we introduce R'-sets and give various relations between R'-
sets and prove that the hyperspace of a metric continnum containing
any one of the R'-sets also contains R'-set and hernce is not contractible.

2. Ri-sets

By a continuum we mean a compact connected metric space. For a
metric space (X,d) and A C X and e > 0, let N(A,¢) = {r € X :
d{a,z) < € for some a € A}. Let 2% be the collection of all nonempty
closed subsets of X, and let C(X) be the collection of all subcontinua
of X. Then C(X) C 2%. The Hausdorff metric for 2% is given by
H(A,B) =inf{e>0: AC N(B,¢) and B C N(A,¢€)} for A, B € 2X.

DEFINITION 2.1. Let {X,}%° | be a sequence of subsets of a space X .
Limit superior of the sequence is the set, denoted by LsX,,, of all points
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r € X such that each neighborhood of x intersects infinitely many X,,.
The limat inferior of the sequence is defined to be the set, denoted by
LiX,, of all points # € X such that each neighborhood of 2 intersects
all but a finite number of X,,. If LsX, = LiX,, then the limit of the
sequence to be LtX, = LiX,, and we say that the sequence {X,}>,
converges to LtX,.

DEFINITION 2.2. A nonempty closed proper subset K of a continuum
X is called ;
an R'-set if there exist an open set U containing K and two sequences
{Ci}22,, 1= 1,2, of components of U such that K := LsC! N LsC?,
an R?-set if there exist an open set U containing K and two sequences
{Ci}e,, i =1,2. of components of U such that K := LtCL N LtC?2,
an R%-set if there exist an open set U and a sequence {C,}32, of com-
ponents of U such that K = LiC,,.

THEOREM 2.3. Every R%-set is both an R! and R*-set.

Proof. Let K = LtC} N LtC? C U be an R?set. Then, by definition,
we have LsCi = LtC for each ¢ = 1,2. Hence K is an R'-set. For each
natural number n, let Dy, 1 = C} and Ds,, = C2. Then it is easy to see
that K = LiD,,. Hence K is also an R*-set. 4

THEOREM 2.4. Every R!-set contains an R2-set.

Proof. Let K = LsC} N LsC? C U be an R'-set. Let x € K. Then
there exist two convergent subsequences {C} }22, of {CL}o2,, ¢ = 1,2,
such that = € LtC, N LtC: . Since LtC;, C LsC? for each i, K' =
LtCl n LtC’f,k is a nonempty closed subset of K. Hence K’ is an R*-

‘N

set,. 0

The following is an immediate consequence of Theorem 2.3 and The-
orem 2.4.

COROLLARY 2.5. Every Rl-set contains an R3-set.

We give examples of spaces with R'-sets which show that R'-sets are
distinct. We denote the line segment between two doints p and ¢ in a
Euclidean space by pq.

EXAMPLE A. There is a disconnected R!-set which is not an R3-set:

Let S = {(r,y) - 2* +y* = (3)% 220}, a=(0,1), u=(0,3), v =
1

(0, -21—) and p = (1,0). For each natural number n, let a, = (a3 %f’—ﬁ),
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. (745 _ _ 5 1 (1 +5
by = (27:1+6’ n+3) - ( ,0), ¢, = (271—:6"—;{;’;/]’ dn = (;L-—F_S’_2:21j—6))
f":(nL-H} ~Z) :{ ) m2+y2:(ni—3)2+(;ﬁ_:~56) ? n+1—3 Srs

2 ]
sy 2 0}, and B, = {( m,y) rt Yt = () r (27111:56) s S s

2’;;56,31 < 0}. Let Yy = SUavU(US; (aanUD, Ub,p,Upc, UE, Ud, fr)),
and let Y3 be the image of Y} under the symmetry map s with respect
to the origin, and let X =Y; UY, Then X is a continuum.

Let U = X \ {a, s(a)}, and let, for each natural number n, C! be the
component of U containing p,, and C? the component of U containing
s(p,). Then K = LtC} N LtC? is the union of the segments uv and
s(u)s(v).

Let U' = {(z,y) € X : =55 <7 < 5 and = <y < 3} Let,
for each natural number n, C},, be the component of U/ containing
an, C1. the component of U’ containing ¢,, C3,,, the component of U/’
containing s(a,), and C%, the conponent of U’ containing s(c,). Then
K = LsC} N LsC? = wv LJ s(u)s(v) is an Rl-set. But one can see that
K is not an R3-set.

EXAMPLE B. There is a disconnected R*-set which is not R'-set:
First we define two continua A and B in the plane. Then we attach
these two in certain way to get our space X.

/’/\\\
/N

/ A \
/p \l] >\\

q3 qs
Fig. 1. Fig. 2.
Let P = (02)' P2 = (O~1)7 Py = (0~0) Py = (—1,0), and b5 =
(1,0). For each natural number n, let a, = (- %,%) b, = (—1,%),

Cp = (; ;), and d,, = (1, %) We put A = pip3 U pyps U (U2 (pa, U
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anbyn)) U (U (p1cn U ¢,d,,))(Fig.1). For the continuum B, let q; = p;,
11

for each i € {2,3,4,5}. Let, for each natural number n, e, = (=22,
fn = (071 + %)1 gn = (;1;’%) and h, = (11%) We put B = gags U
9aqs U (Un1(qaen U en fo U frgn U gnhn))(Fig.2). Let ps = g6 = (0, %) and
pr=qr = (0,7). Let f: Ax {0} — B x {1} be the attaching map
such that f @ (paps U paps U prps) x {0} — (qags U qags U grgs) x {1}
is given by f(z,0) = (z,1). Let X = (A x {0})U;(B x {1}). Then
X is a continuum. We let U = X \ {(p1,0),(gs,1)}. Then U is an
open set. Let, for each natural number n, Cs,.2 be the component
of U containing (a,,0), Csny1 the component of U containing (c,,0),
and (s, the component of U contaming (e,,1). Then we can see that
LiC,, = f({(p2ps U prps) x {0}) = (g2¢6 U g7g3) x {1} is the union of two
disjoint arcs gogg and g-qs, which is R3-set but not an R'-set.

ExAMPLE C There is a disconnected set which is both an R! and
R3-set but not an R?-set: Let Y be the space in EXAMPLE 4 of [4](see
Fig.3).

Fig. 3.

Let b,’, ¢/, d,,/, e,’, @, € denote the points in Y which are images of
by, Cn, dn, €n,s a, e under the symmetry map with respect to the origin
respectively. Let X be the space in the above Example B. Let d' = (0, 1)
and d = (0,—1). Let g : (edU€'d’) x {0} — X x {1} be the attaching
map defined by g(0,2,0) = (0,z+43.1). Let Z = (Y x {0}) U, (X x {1}).

is a conti = { -8 S _9
Then Z is a continuum. Let U = {(7,4,0) € Z: — 5 <z < 15, —15 <
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y < 5 U((X x{1)\{(p1,0.1), (g4,1,1)}). Then U is an open set in Z.
Let, for each natural number n, C! be the component of U containing
the point (e, 1,1), CZ, the component of U containing the point (,,0),
and C%,,, the component of U containing the point (d,’,0). Then the
image of the union of the arcs ed and e'd’ is an R'-set.

On the other hand, if we let Cs,,2 be the component of U containing
(€n,1,1), Cany1 the component of U containing {a,,0,1), and Cs, the
component of U containing (¢,, 0, 1) for each natural number n, then the
image ed U €'d’ of the disjoint two arcs ed and e'd’ is the R3-set, which
is clearly not an R?-set.

EXAMPLE D. Let X be the space given in Exarnple C in [16] (see Fig.
4).

As noted, this space contains R'-continuum which is neither R2%-
continuum nor R*-continuum.

We shall find all R'-sets of X with respect to an open set U and all its
components. Let f be a map defined by f(z,y, 2) == (—y, z, z+1) for each
(z,y,2) € Xp. Let f° be the identity, f! = f, f2 = fof and f3 = f2of.
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Let U = X \ {f%a), fl(a), f%(a), f*(a)}. For each natural number n
and each ¢ € {0,1,2,3}, let C* be the component of U containing the
point f*(p;). Let by = (1,0,0), b1 = (0,1,0), b = (—1,0,0) and
by = (0,-1,0).

We will adopt the following notations: Let E(7) = {C} | LsE(i) =
LsC}, and LiE(1) = LiCt for each i € {0,1,2,3). ForO <i, j k<3,
let E(z J)= {D,}2, be the sequence obtamed by Dy = C% and
Dy, = CJ for each natural number n, and let E(i, ), k) = {F, }n °, be
the sequence formed by F3,.0 = C7, F3,y1 = €Y and Fy, = C* for

T
each natural number n. Since each I ( ') converges, for each i, j we have

LsE(i, j) = LsE(j,1), LiE(z, j) = LiE(j, i), and Ls£(i, j, k) equals the
limit superior of £ of any rearrangement of i, j, k. Similarly LiF(s, j, k)
equals the inferior of E of any rearrangement of i, j k.

We find LsE(7) for each i: Notice that LsE(i) = LiE(i) for each
1. LfE(O) = LILCVS = Tpqo U qu,() U f()S[) U bofu((l), LfE(l) = LI‘CTII =
SoTo U Toq0 U Q()fo U b]f((l), LfE(Z) = LTC,f = GQoTo U ToSg U Sot() U b2f2((1),
and LtE(3) = LtC? = rosy U sgto U toge U byf3(a). And none of these
limiting sets are an R'-set.

Let us find LsE(i) N LsE(j) : Ky = LsE(0) N LsE(1) = g U goto U
{80}, [(Q = LSE(l) N L?E(Q) = quro U rgsg U {f()}, K3 = LSE(Q) N
LSE(S) = roso U st U {qO}, K4 = L“vE(:j) N LSE(O) = Sglp U f()(]() U {7'()},
K5 = LSE(O) N LSE(Q) = goTo U ng(), and K@ = LSE(I) N LSE(B) =
T0SgUgoto. All of these sets are R'-sets, and none of them are connected.

We compute LiE(i,j) 1 LiE(0,1) = LLE(O)NLIE(1) = K, LiE(1.2)
= LtE()NLtE(2) = Ky, LiF(2,3) = LtE(2)NLtE(3' = K3, LiF(3,0) =
LtEQ3) N LtE(0) = Ky, LiE(0,2) = LtE(0) N LtE(2) = K. and
LiE(1,3) = LtE(1)N LtE(3) = K.

Observe that LsE(i, j) = LsE(¢)ULsE(j) for each i and j. Similarly
LsE(i,j, k) = LsE(1) U LsE(j) U LsE(k).

We now compute LiE(3, j, k) : LiE(i. j, k) = LiE()NLiE(5)NLiE(k)
so that LZF(O, 1, 2) = qO70U{6() fo} = [\7 LZE(I 2 3 = 7080U{(]0,TQ} ==
Kg LZE(Q,J 0) = S()f() UJ {qO 70} = j\g, LZE(3 O 1) = qu() U {’I[) 80} =
Kyo. All of these are R3-sets. None of them are connected.

LiE(0,1,2,3) = {go.70, S0, fo} = K11, which is an R3-set.

We compute LsE(i, j) N LsE(k): Since LsE(z,7) N\ LsE(i) = LsE(4)
for all 4,7,k and for each fixed k, LsE(i,j) N LsE(k) = LsE(/,j') N
LsE(k) for k # i,4',j,5', we have only four types: K5 = LsE(0,1) N
LSE(Q) = (]07’0UT()80USOf/0, Klg = LSE(O 1)0LSE(3) = T‘oS()US()f()UtQ(]().



R'-sets and contractibility 315

K’M - L&E(O,Q) N LSE(I) = sqgrg U Toqo U tho, K15 = LSE(l.J) n
LsE(0) = rogo U qoto U t9So. These are all R!-continua.

Here we note that LiE(i, 7) # LsE(Z, ) for all i # j.

Let us compute LsE (i, j)NLsE (¥, j'): There is only one type. K5 =
LsE(0,1)NLsE(2,3) = LsE(0,2)NLsE(1,3) = LsE(0,3)NLsE(1,2) =
Sp. If, for any two sequences E(i,j) and E(7,j') such that i # j,
i€ {i,j} or j € {#,5'}. then LsE(¢,j) N LsE(¢, §') is not an R'-set.
K5 is an R'-continnum, and one can easily see that it is neither an
R?-continuum nor an R*-continuum.

Finally we consider LsE(7,j. k)NLsE(¢, j') and LsE(¢, j, k)N LsE (4,
4'. k"). None of these are R'-sets. Since there are no other R'-set of
X, {K, :n =123, ..,16} is the collection of all R'-sets of X. We
note that for a disconnected R'-set K., no component of K, is an R'-
continuum.

3. Noncontractibility in hyperspaces

DEFINITION 3.1. [1] A nonempty subset A of a space X is said to be
homotopically fized if, for every deformation h : X x [0,1] — X, we
have h(A x [0,1]) C A.

Clearly if a space contains a subset which is homotopically fixed, it is
not contractible.

The next theorem is a generalization of Czuba’s Theorem 3 in [3]
which was given for the class of dendroids containing R*-continuum.
Our proof is almost identical with that of Czuba.

THEOREM 3.2. If a continuun: X contains an R'-set K, then K is
homotopically fixed.

Proof. Let K = LsC NLsC? C U be an R'-set, where U = N(K,¢€) is
an € -neighborhood of K and C? are components of U. Suppose, on the
contrary, that there exists a deformation h : X x [0,1] — X for which
h(K x [0,1])\ K # 0, i.e., for which there exists a number t' € [0, 1] with
the condition (*) A(K x {t'})\ K # 0.

First we show that there are to > 0 such that h(K x [0,#]) C N(K,%)
and (po,t') € K x [0,to] such that h(py,t") = ¢ € X \ K. For each
point p € K, let t, = sup{t € [0.1] : h({p} < [0.1]) C N(K, )},
and let tq = inf{t, : p € K}. We claim that #, > 0. In fact. sup-
pose to = 0. Then there is a sequnce {p,}>2; of points of K such
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that the sequence {t,, }2, of corresponding numbers contains a subse-
quence {#,, }?°, which converges to zero. It follows from the compact-
ness of K that the sequence {p,}3, contains a subsequence {Pn }22,
which converges to py € K. Hence by the definition of to if t, < 1,
then h(p,t,) € Fr(N(K,5)). Since the sequence {tpn, }22, converges
to zero as a subsequence of {#, }22,, we may assume that tpn, < 1 for
sufficiently large &, and hence h(pny,tp, ) € Fr(N(K,§)). Since the
map h is continuous and the set Fr(N(K, 5)) is closed, we conclude
that h(po,0) € Fr(N(K,%)). But since h is a deformation we have
h(po,0) = po, whence py € Fr(N(K, 5)). which contradicts p, € K.
Thus the inequality ¢, > 0 is established. It follows now from the defi-
nition of #y that h(K x [0,#]) C m@

Secondly we claim that there is a number # € [0.#o] such that the
condition (x) is satisfied. To see it, if o = 1, then h(k %[0, 1]) C N(K,$)
so that there exists # € [0, 1] such that () is satisfied. Therefore, there
exists pp € K such that h(po,t') = g€ N(K,§)N(X\ K). Ift5 < 1,
then we take ¢’ = #3. Then there exists a sequence { P}, of points of
K such that ¢, < tr, < 1 and fg = limy_ootp,. As before, let {Pn, 1324
be a subsequence of {p,}22; which converges to py € K. Applying once
more the same arguments as above, we get h(pny 1y, ) € Fr(N(K, %))
for almost all k. Hence h{pg,to) € Fr(N(K, 5)) and thus the point
h(po,to) ¢ K. So let ¢ € [0,1o] be any number such thet the condition
(*) holds and let py € K such that h(po,#') ¢ K. Put h(py,t') = q and
define ty = inf{t' € [0,%] : h(po,#) = ¢}. Then by the continuity of
h, we have (xx) h(pg,ty) = ¢ € X\ K. Now let K be an Rl-set and
Po € K and t; € [0, ] which satisfy the condition (xx). Let {p! ® LDy E
Ct.,i = 1,2, be sequences such that liman oo, = po, for such @ = 1, 2.
Let g;, = h(p},, ty) for i = 1,2. Then /im,_ooq’, = q for each i = 1, 2. By
the definitions of ¢ and ¢}, d(q, K) < § for sufficiently large n for each
¢ = 1,2. By the continuity of h and by the connectedness of the sets
{ri,} x [0,#4],7 = 1,2, the sets h(pi,[0,1}]),i = 1,2, are connected and
Lt(h({pi} x [0,1)))) = h{{po} x [0,1)]) Cc N(K, 5), fori=1,2. So for a
sufficiently large n, h({p,} x[0,15]) C N(K,¢). Since i, = h(p},0) € Ck.,
and h({p,} x [0,#)]) is a connected subset of N(K ¢), ¢ € C;, and
q = limp,_.ooql, € K, but ¢ € X\ K. This is a contradiction. This proves
the theorem for Rl-set.

We can also prove similarly that it is true for other R'-set. 0
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COROLLARY 3.3. If a metric continuum contains an R'-set, then it is
not contractible.

We prove next that if a metric continuum contains an R'-set, so do
its hyperspaces.

For a subset D of X, let C(D) = {A € C(X): AC D} and 2P =
{Ae2X: Ac D}

The following Lemma is already known.

LEMMA 3.4. IfD is a connected subset of 2X such that DNC(X) # 0,
then UD is connected. In particular, if D is a connected subset of C(X),
then UD is connected.

LEMMA 3.5. Let X be a metric continuum. Let U be an open set
in X and let C be a component of U. Then 2¥ = {A € 2X : A Cc U}
is open in 2% and 2¢ = {A € 2X . A C C} is a component of 2V.
Also C(U) = {A € C(X) : A C U} is open in the space C(X) and

C(C)={AeC(X):ACC} isacomponent of C(U).

Proof. Let A € 2V. Since A C U, there is an € > 0 such that
the e-neighborhood N(A,¢) of A is contained in U. Let O be the e
neighborhood of A in 2. Then for each B € O we have B C N(A, ¢) so
that B € 2V. Hence 2V is open in 2%. In similar manner, one can show
that C(U) is open in C(X).

First we show that C(C) is connected. Let O* = {{z} : z € C}.
Then C and C* are homeomorphic and C* C C(C"). Let A € C(C) and
a € A. Let ay be an order arc hy (1.11) in [9] from {z} to A. Then
ay CC(C). And C(C) = U{aa : A € C(C)} U C* is connected. Now
let C be the component of C(U) containing C(C). Let A € C. Since UC
is a connected subset of U by the above Lemma which contains C and C
being a component of U, A C UC = C. So that A € C(C). This shows
that C(C) is C.

In order to show that 2¢ is a component of 2V, we use the connect-
edness of 2¢ by Theorem 4.10 in [8]. So if D is the component of 2V
containing 2¢ and A € D, then U2“ is connected subset of U by the
above Lemma and hence UD C . Therefore /A C UD implies that
A €2¢ 2C is a component of 2V. |

THEOREM 3.6. If a continuum X contains an R'-set, then 2% con-
tains an R'-set for each i € {1,2,3}.
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Proof. Let K = LsC) N LsC2 C {/ be an R'-set, where U is an open
set and C}, are components of U. Then 2V is an open set in 2¥ and 2
are components of 2V for each i = i,2. Let K = Ls26% N Ls2C%. Since
{z} € K for each z € K, K is nonempty. Also it is closed. Since each
A € K is a closed subset of K, K € 2V. Hence it is an R!-set.

If K is an R%set, then K defined as above is an Rl-set and thus 2%
contains an R?-set by Theorem 2.4.

If K = LiC, C U is an R3set, then K = Li2% i« an R3-set. |

THEOREM 3.7. If a metric continuum X contains an R'-set, i €
{1,2,3}, then C(X) contains an R'-set for i € {1,2,3}, respectively.

Proof. Let K = LsC, N LsC? C U be an R'-set of X. Then C(C")
are components of C(U). Let X = LsC(C}) N LsC(C?). Then K* =
{{z} : » € K} € K and K is closed. Let A € K and let {A},
Ai,] € C’(C;J),i = 1,2, be sequences such that l?'/m,j__,mA;J = A, for each
i =1,2. Then A C K so that A € C(U). Hence Il ¢ C'(U). 1t is an
R'set of C(X). The proofs for other Ri-set are similar. O

COROLLARY 3.8. If a metric continuum X contains an R'-set, then
2% and C(X) are not contractible.
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