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ALMOST CAUSAL STRUCTURE IN SPACE-TIMES
JONG CHUL PARK

ABSTRACT. We shall introduce the concept of almost causality con-
dition. By defining the almost causality condition we would like
to examine the relationship between Woodhouse’s causality princi-
ple and other known causality conditions. We show that a series
of causality conditions can be characterized by using the almost
causality condition.

I. Introduction

The concept of almost causal precedence was proposed by Woodho-
use[9]. There is an essential difference between the almost future and
the Seifert future. The relation J} between events in a space-time
is transitive one, ie., y € Jf(z) and z € JF(y) imply z € JH(z).
However, this is not case for the relation A*.

In this paper, we shall introduce the concept of almost causality
condition. By defining the almost causality condition we would like to
examine the relationship between Woodhouse’s causality principle and
other known causality conditions. We show that a series of causality
conditions can be characterized by using the almost causality condition.

I1. Preliminaries

By a space-time we mean a pair (M, g) with M an orientable, time
orientable, connected paracompact and Hausdroff differentiable mani-
fold without boundary and g a Lorentzian metric defined globally on
M. The chronological relation < (causal relation < ) between points
of M are defined by saying = <« y (causal relation = < y ) if only there
i1s a future-directed timelike (nonspacelike) curve from z to y. The
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chronological future *(4) and causal future J*( A) of a subset A of
M are defined as

I"(A)={g€ M: thereisapc A with p < q},

JY(A) ={qe M: there Isap€ Awith p <gq}.

Dually, the chronological past I ~(A) and the causal past J “(A) are
defined. We note that I*(A) are open for all A ¢ M. For a single
point p, we abbreviate I*({p}) by I*(p) and similarly for J*. The
chronological common future T U of an open subset U of M is defined
by

TU=I"({pe M :u<pforallue U}).

The chronological common past | ¢/ is defined dually.

We say that p almost causally precedes g, denoted by pAgq, if for all
z € I7(p), I'*(q) C I'*(z); or equivalently, if for all y € It(g), I"(p) C
I7(y). We note that pAq iff every neighborhood of p would contain
a point which will precede chronologically some points in any neigh-
borhood of ¢q. The almost future A*(p) and the almost past A7 (p) of
p € M are defined

A*(p) ={y € M :pAy}, A~(p) = {z € M : zAp}.

Distinguishing conditions were introduced to exclude situations in
whi-ch there were nonspacelike curves which returned arbitrarily close
to their point of origin. A space-time M is future (resp., past) dis-
tinguishing, if I*(z) = I'*(y) (resp., I~ (z) = I (y) implies = = Y.
An equivalent statement is that for any p in M and any neighborhood
Up of p, there is a neighborhood Vp of p contained in U p such that
no future- (resp., past-) directed nonspacelike curve through p which
leaves Vp ever returns to it. A space-time (M,y) is distinguishing
if and only if it is future and past distinguishing. A space-time M
is future reflecting if I~ (p) C I~iq) implies I*(¢) C I*(p), and it
is past reflecting if I*(p) C I'*(q) implies I~ (¢q) = I=(p) : whereas
M is reflecting if it is both past and future reflecting. The reflecting
space-time was investigated by Hawking and Sachs[5].

Since the quantum uncertainty principle implics impreciseness in
the measurements, it will not be possible to measure that exact values
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of the metric at any point and hence the metric perturbations are to
be taken into account. To achieve this, Seifert[7] defined the J}(z) as

follows:
JH@) = () J* (2,9

g>g

Here g > g means that the null corn of g are everywhere wider than g,
i.e., every nonspacelike vector with respect to g becomes timelike with
respect to g. We call the set J} (z) as the Seifert future set of z.

We shall that a space-time (M, g) is stably causal if there exists a
Lorentzian metric § such such that (M, g) is causal and for each p € M
and v € T,(M) with v # 0, g(v,v) < 0 implies g(v,v) < 0. We say that
M is causally continuous if it is distinguishing and reflecting. There are
many equivalent descriptions of this important causality conditions[5].
For these space-times the causal structure may be extended to the
causal boundary[3]. Furthermore, a metrizable topology may be de-
fined on the causal completion of a causally continuous space-times|2].
A distinguishing space-time M is causally simple if J*(p) and J~(p)
are closed for all p € M.

All of the other notations and terminologies of this paper will be
refered to Beem and Ehrlich{1] and Hawking and Ellis[3].

II1. Almost causal structure in space-times

The following lemmas that are proved in [1] and [5] will be used to
show our theorems in this paper.

LEMMA 1. Let M be a space-time. Then for all z € M,

Int(AY(2)) =1 I (z).

LEMMA 2. Let M be a reflecting space-time. Then, for all z € M,
117 (x)=1"(z), | IT(z) =1 ().
It is known that for a general space-time, the causal future Jt(z)

of some = € M need not be closed in the manifold topology. However,
we know that the almost furure of an event is always closed [1].



260 Jong Chul Park
LEMMA 3. Let M be a space-time. Then the almost future A% ()
is closed in the manifold topology for all events x € M.

LEMMA 4. Let M be a distinguishing space-time. Then M is re-
flecting if and only if J*(z) = J*(x) for all events x € M.

The relationship between the almwost future and Seifert future of an
event in a general space-time is obtained in the following result.

PROPOSITION 5. Let M be a space-time. Then for all x € M,

At(z) C I (2).

Proof. From the definition of J} (z), we have I't(z) C J}(r). Note
that J; () is closed for all z € M. Hence I'*+(z) C JJ (z) = J} (). Let
now p € At (z). Then I't(p) C I*(») for all z € I (x). Consider now
a sequence p, in I~ (x) converging to z. Then we have (J}(p,) C
JH(x). Now It(p) C I't(z) for all = € I~ (x) imples that p € I+(z)
forall z€ I (x). Sope Jf(z) for all z € I™(x) and so p € " JF (pn)
since p € I~ (z) for all n. Hence p € J}(x). 0

However, for a general space-time they are not equal (see Figure 1).

With this motivation we shall define the following definition:

DEFINITION 6. A space-time M is said to be almost causal if, for
all r € M,

The following proposition shows that for a reflecting space-time, the
almost future of a point turns out to be a simple ard well-known set.

PROPOSITION 7. Let M be a reflecting space-time. Then, for all
xz €M, o
At(x) = It(x).

Proof. By lemma 1, Int(A*(z); =1 I (z). Ncw by lemma 2, 1
I (z) = I'*(z). Since A* (x) is closed in the manifold topology, A* (x) =
At(x) = IntAt(x) = 1 I () = [t{x). O
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CUTI

i

Figure 1. In the space-time here, z ¢ At (z) because the future of
any event 7 € A7 (x) is fully obstructed by cuts in M so it cannot
contain the future of the event z. But clearly for all metrics § > g,
z € J*(z,7) because a slightest perturbation in the metric would open
up the null cones to give way to nonspacelike curve to reach from z to
z. Hence z € Jf (z) and the two futures A*(x),.J} (x), are not equal.

THEOREM 8. Let M be a causally continuous space-time. Then M
satisfies the almost causal condition.
Proof.
I (@)= () TH(z,5)

g>g

=T )

= I*(r)

= A+(:r)

The following proposition was proved by Seifert[7]. 0]
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PROPOSITION 9. A space-time M is stably causal if J} is a partial
ordering on M (i.e., p € J}(q) and q € J} (p) implies p = q).

THEOREM 10. Let M be a almost causal space-time. Then M is
stably causal if and only if M satisfies the Woodhouse causality prin-
ciple.

Proof. As we have shown in Proposition 9, Seifert has shown that
the stable causality of M implies that z € J}(y) and y € J}(x)
implies # = y. Now suppose zAy and yAx hold. Then y € A*(z) and
z € A*(y). Since AT (x) C J}(z) for all x € M, this implies = = y,
that is, M is Woodhouse causal. Conversely, suppose that = € J} (y)
and y € J}(x). Since M is almost causal, z € JF(y) = A*(z) and
y € JS(z) =A% (x).

Hence r = y. So M is a stable causal space-time. O

The following corollary is straightforward from Theorem 10.

COROLLARY 11. Let M satisfies the Woodhouse causality principle.
If M is almost causal, then M is stable causal.

Proof. Assume that z € J}(y) and y € J}(2). Then, from the
theorem above, z € Jf(y) = At (y) and y € Jf(z) = A+( ). So
T =Y. QO

In particular, J*+(x) C J}(z) for all events = € M. Figure 2 shows
that J+(z) # J} (x).

THEOREM 12. Let M be a reflecting space-time. If M is almost
causal, then J*(z) = J} () for all z € M.

Proof. At (z) =It(z) = J+(z) = J}(x) C A*(x). a
Recall that M is reflecting space-time if and only if [I*( ) D It(q)
iff I (p) C I (g)], if and only if [g € T+ (p) iff p € T~ (q)).

THEOREM 13. Let a space-time M satisfies the following condition:
J*(p) and J~ (p) are closed in M for every p € M. Then M is reflecting.
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Figure 2. The space-time M is conformal to a submanifold of 2-
dimen-sional Minkowski space. Here, J*+(x) # J; (z) corresponding to
a lack of smoothness under small perturbation of the metric.

Proof. Since q € I*(p) = J*(p) = J*(p), pe J(q) = J (9 =
I=(q). Similarly, if p € I~ (g), then q € I*(p). a

We get the following the result of Theorem 13.

THEOREM 14. Let M be a causally simple space-time. Then, for
all event x € M,

At(z) = JF(z) = JH(z).

Proof.
At(z) = J} (z)(~ almost causal)

-

+(z)(« causally continucus)

= J ¥ (z)(« causally simple .
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