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ON 2-CARDINALLY PERMUTABLE GROUPS

YANGKOK KiMm

I. Introduction

In recent years there has been much interest in the study of groups
satisfying various permutability conditions (see, for instance, [1], [2]
and [3]). More recently, the following condition has been studied: for
some m, if S is any subset of m elements of a group G, then |S?| < m?
(where, for subsets A, B of G, AB stands for {ab;a € A,b € B}). It was
shown that groups with this property are finite-by-abelian-by-finite. In
[5], more generalized condition, collapsing condition, was introduced by
Semple and Shalev. A group G is called n-collapsing if for every subset
of n-element in G, |S™| < n™ and G is collapsing if it is n-collapsing
for some n. They proved that for a finitely generated residually finite
group G, it is collapsing if and only if it is nilpotent-by-finite. Now we
consider a similar notion of permurable subsets.

DEFINITIONS. (a) A subset S is said to be special if there exists a
subset T' of a cyclic subgroup of G such that S == 2Ty or Ty J{t}
where =,y € G, t € T. In other word, a special subset of G is of the
form {at™y, at™y, . . xt"ry} or {t" ztMy, xt™y, ... 2t y} where
l1<i<randayteG.

(b) For integers 1 < m < n, a group G is said to be 2-cardinally
permutable to (m,n) if (i) G has at least one m-element special subset
and one n-element special subset, and (ii) for every m-element spe-
cial subset A and n-element special subset B, AB and BA have same
cardinalities.
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We call a group G 2-cardinally permutable if it is 2-cardinally per-
mutable to (m,n) for some 1 < m <n.

For every integer pair 1 < m < n, it seems hard to completely
characterize groups which are 2-cardinally permutable to (m,n). How-
ever in this note we will completely characterize groups which are 2-
cardinally permutable to (m,n), where 1 < m <17 < 3 and then show
that 2-cardinally permutable groups are center-by-(finite exponent).
Moreover nonperiodic 2-cardinally permutable groups are nothing but
abelian. As an immediate corollary, we note that 2-cardinally per-
mutable groups are collapsing.

II. Results

LemMMA 1. Let G be 2-cardinally permutable to (m,n) with 1 <
m<n<3andx,y€ G. Then
a) if #? = 1, then r lies in the center of G;
b) if [z,y] # 1, then y* =y~ L.

Proof. (a) Suppose that x has order 2 and [z,y] # 1 for some y € G.
If y* = 1, then we take A = {1.2, 2y} and B = {1, 4, 2y}. Then |AB| <
|BA|, a contradiction. If y? # 1 then we may take special subsets
A={l,y.yr} and B = {1,z,zy}. Then AB = {1,z,y, zy, yz, yzy, y*}
and BA = {l,y,x,yx, ry, vyz, ry*, xy’z}. Since |AB| < |BA|, there
must be one collapsing in BA. The only possible cases are (i) y = zy°x
or (ii) yx = ry?z. These two relations are same and so there must be
a collapsing in AB. However = = yry is the only possible case in AB.
Hence we have y* = 1 and © = yry. Now we take A = {1, 7,7y} and
B = {1,y,xy}. Then we get |AB| < |BA|. For the cases of m = n = ¢
and m = 2,n = 3, we may take A = {l,r}, B = {y, 2y} and 4 =
{l,z}, B ={1,y.xy} respectively.

(b) Let [r,y] # 1. Take A = {1.x, 2y} and B == {1,y,2 'y}. Then
AB = {l.y, v 'y, a2y, xy?, zyr~ 'y} and BA = {1, =, zy, y, yx, yry,
e 'y, o tyr, w7 tyey}. Note |[AB| < |BA| = |AB| + 2. Hence there
must be collapsing in BA and we have seven possible cases, namely,
1 = .'1,'"‘12/.17!/. €ro=yay, r = :It’ly.!?y, Ty = :r‘ly:l, yr = ;r"ly, yr =
x lyry, and yry = 7 'yr. Now we have to find compatible 2 cases.
By simple check, we have at least one of the following three relations,
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(i) = = yay, (ii) 2° = y*(with y = zyr) and (jii) #* = Hwith y = zyx).
If (i) happens, we are done. If (ii) or (iii) happens, then we take replace
T,y by xy,y respectively. Then we have at least one of three relations.
namely, (i') zy = yxyy, (ii') zyryry = y? and (iii') zyaryzry = 1. Since
y = zyz, (ii') or (ili’) can not happen. If (i) happens, y = zyr =
yryyzr and so y? = z72. This is final contradiction. For the case of
m=mn=2and m = 2,n = 3, we may take A = {1.y}, B = {x,yz}
and A = {1,y}, B = {1,z,yx} respectively. O

THEOREM A. G is 2-cardinally permutable to (2,2) or (2, 3) if and
only if either i is abelian or the direct product of a quaternion group
of order 8 and an elementary abelian 2-group.

Proof. Let G be 2-cardinally permutable to (2,2) or (2,3). Then by
Lemma 1(b), 2¥ = z*! any =,y in G. So G is a Dedekind group and
every element of odd order is in the centre of G. If ( is not abelian, then
G has no elements of odd order, otherwise, with z.y, z in G, [r,y] # 1.
z of odd order, we get (x2)" = 27 'z # (z2)F'. Now the result follows
from the structure of Dedekind groups (see [4], p. 139).

For the converse, let G'= Q x ) where D is an elementary abelian
2-group and Q a quaternion group of order 8. F.rst we show that G
is 2-cardinally permutable to (2.3). Actually we do not have to take
special subsets. Let A = {g1,g1ax}, B = {g2,0yg2,c2g2} be given
two subsets of G, where a.b € Q, r,y € D and g;,¢9» € . Write
A={1ar}, A”={1, ax }and B’ = { 1, by, ¢z } where ¢ = 1
if gog1 lies in the centeralizer of ¢, and € = —1 if not. Then |AB| =
|A'B'| and A'B’ = {1,by,cz,ax, abzy,aczz}. And |BA| = |B'A”| and
B'A" = B'UB'-a‘r = {1,by,cz.a*z,ba‘zy, ca‘rz}. In every case, if
there is one collapsing in A’B’, there is a corresponding one in B’ A”.
For example, if cz = abry. then z = zy and ¢ = ab. Hence ¢ = ba

or ¢ = ba~t. Thus cz = bazy or by = ca if ¢ = 1. and by = ca~! or
cz = ba"lxy if not.
For the case of m = n = 2. we may apply a similar argument. ]

THEOREM Ar. G is 2-cardinally permutable tc (3,3) if and only if
G is abelian.

Proof. Note that a quaternion group @ = (x,yla? = 1,y? = 22, yr =
x3y) is not 2-cardinally permutable to (3,3). For 4 = {lL.&,xy} and



230 Yangkok Kim

B = {1,z,zyx}, we have |AB| <. |BA|. So the result follows by the
same argument in Theorem A. O

LEMMA 2. A 2-cardinally permutable group  Is center-by-(finite
exponent).

Proof. Let G be 2-cardinally permutable to (m,n). We claim that
there exists an integer k such that [y¥,z] = 1 for all =,y € G. Let
T,y € G. We consider two n-element subsets 4 and B where A =
{1, y, v*.---, y" 'Yand B = {a, yx, y?x,---, y" '2}. Then AB =
{x, yx, y?x,, y"*" 22} and so |AB| = m +n — 1. Now BA =
BUByUBy*--UBy" .

If |B|JBy| — |B| > 1, then there is some integer ¢ < m such that
T = BUBylJ---UBy" > By"*'. Then Ty" C T for all integer h.
Hence y has bounded order.

Suppose that |B|J By| — |B| = 1. We then have a relation = = yxy.
Take m — 2 distinct integers, aj,az,...,am_9 with 3 < a; < p for
some big positive integer p, and 7 — 2 distinct inzegers, by, by, ..., b, _»
with p +1 < b; and b;y; = b; + p. Here we consider another two
special subsets of G, A = {1,2}|JA, and B = {y,ry}|J B, where
Ay = {zy® xy*2, . xy® -2} and By = {ay?, vy, . xy’»-2} Then

AB = {y,zy. xxy} U Al:zfyU AlyU B U:I“Bl U A By,
BA={vy, ry, Ty, yr} UmyAl Uy/h UBf U BlmUBlAl.

By the choice of a;, b;, |AB| < |BA|. 0

THEOREM B. Nonperiodic 2-cardinally permutable groups are abel-
ian.

Proof. Let G be 2-cardinally permutable to (m. n). Then G has non-
periodic centre Z containing a torsion-free elemen: z. Suppose 1,y € G
and [r,y] # 1. Let Z be of order k in G/Z. Take m — 2 distinct
integers, aj,as,...,a,_» with 3 <2 a; < p for some big positive in-
teger p, and n — 2 distinct integers, by, by, ..., b, o with p + 1 < b
and b,y = b; + p, where a; and b; are 1 under modulo k. Now
we consider two special subsets of G, A = {1,(z2)}|JA| and B =
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{y, (375)3/}Ulil where Al} = {(z)",(z2)", ..., (x2)*"*} and B, =
{(z2)"y, (22)y, ..., (xz)"""*y}. Then

AB = {y,zyz, zayz*} UAlmyUAlyUBl UmBl UAlBl ,
BA ={y, zyz, zyxz? yrz} U TyA, UyAl U B U leU B A;.

By the choice of a;, and b;, all elements in AB are distinct. Hence
there should be at least one collapsing in BA. Since z is not in centre
Z, we have finitely many types of possible relations.

Note that the above argument is independent of the power of z.
That is, we can replace z in 4; and By by z¢ for all integers ¢ and get
the same possible relations. Thus at least one type of relation should
hold for infinitely many integers. This is clearly impossible. )

Note. (i) If a finite group G has a cyclic subgroup K of index 2, then
G is 2-cardinally permutable to (m,n), where 1 < m < n = |K|+ 1.
For suppose that G is not abelian. G has |K|+1 element special subset
and it is of the form, {h}|J Ha where a ¢ H, h € H and H is a cyclic
subgroup of order |K|. Let A be an n element special subset of G and
B an K|+ 1 element special subset. If ANH # ¢ and AN Ha # 0
for some o ¢ H, then AHo = HaA = G and so AB = BA = G.
If not, |AB| = |BA| = |A| + |H|. In particular, a symmetric group
of degree 3 is 2-cardinally permutable to (2,4), (3,4) and (4,4) and a
dihedral group of order 2n is 2-cardinally permutable to (m,2n + 1),
where m = 2,...,2n + 1. From these examples and Theorem A, A’, we
know that there are no systematic set-inclusion relations depending on
m and n in the class of 2-cardinally permutable groups to (m,n).

(ii) For prime numbers p < ¢, if G is a group of order pq, then
G is 2-cardinally permutable to {q¢ + 1,¢q + 1). Note that the Sylow
g-subgroup ) is normal. Thus the result follows easily from the fact
that every q+1 element special subset is of the form {q} UQg for some
g € G. Actually by using the normality of Q, we can show that ( is
2-cardinally permutable to (m,q+- 1) where 2 <m < g+ 1.

(iii) Not every finite group is 2-cardinally permutable.

Let G = (z,y. 2]z = y3 = 23 = Loy = yzz,v2 = zz,yz = 2y).
Suppose that G is 2-cardinally permutable. Then it is 2-cardinally
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permutable to (m,n) for some 1 < m < n < 4. By Theorem A and A’,
we can assume that (m,n) is (2,4}, (3,4), or (4,4). These possibilities
can be easily removed by taking special subsets {1,z,...,zy™ 2} and
{1,y, 2y, 2%y} for the case of (m,4).

(iv) Clearly 2-cardinally permutable groups are collapsing by Lemma
2. We consider two 2-cardinally permutable groups, the direct product
of a quaternion group of order 8 and an elementary abelian 2-group,
and an infinite cyclic group. Then the direct product of above two
groups is not 2-cardinally permutable by Theorem B for it is a non-
periodic nonabelian group. Hence the class of 2-cardinally permutable
groups is not closed under a direct product.

Question. Are 2-cardinally permutable groups subgroup-closed ?

An infinite 2-cardinally permutable group is abelian if it is nonperi-
odic by Theorem B. It however can be much more complicated if it is
periodic. For example, the direct product of a symmetric group Sz of
degree 3 and an infinite elementary abelian 2-group is 2-cardinally per-
mutable. But S3 x S5 % --- can not be 2-cardinally permutable. Hence
it seems hard to characterize pericdic infinite 2-cardinally permutable
groups. Here we have some information on 2-cardinally permutable
groups. Suppose that G is 2-cardinally permutable to (m,n) and has
an element x of prime order p = n — 1. Then the subgroup (z) is of
interest. In Lemma 1(a) we have that such a subgroup of 2-cardinally
permutable group G to (m, 3) lies in the centre of (/. We can not expect
such property for n > 4 (for example, the symmetric group of degree
3 in note (i)). However we will sce that if (z) is normal in G in the
following theorem. This shows that ‘Tarski Monster’ groups can not
be 2-cardinally permutable.

THEOREM C. Let G be 2-cardinally permutable to (m,n) and p, q

primes. Then for an element = of order p*q' > n — 1, (x) contains a
proper normal subgroup of G.

Proof. Case I. Let m £ n or pSy' >n — 1.

For y € G, we may take A = [1,z....,2™ '} and B = {1}|J B,
where By = {y.xy,....2" 2y} Then AB = AUU:OZ Az'yand [AB| <
|A] +n+m —2. Now BA= Aul";' Bia'. If A Bya' # 0 for some
i, then 27 = 2'yx’ and so y € N((z)), the nonmalizer of () in G.
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If not, note that Z:":BI |Bz'| = (n — 2)(m — 1) + n + m — 2. Thus
Bix' N Byx? # @ for some 4, j and so y € N({z')) for some i.

Case II. Let m = n and p*q¢' =n — 1.

(i) p*q" > 3.

For the case of |y| = £ > 2, we take A = {1}|J A; and B = {1} B;
where A; = {y* "', ¢/ 1z, .y 2%} and B, = {y, 2y, ..., 2"y}
Since |AB| < 3p°¢' + 1 < |By||41| = (p°q")”, there should be at least
one collapsing in By A;. Thus x'y = yz’ for some i, j. Hence we get
y € N({x")) for some i. For the case of 2 = 1, we may follow the
same argument as above for A = {z}|J A, and B = {1} B, where
Ay = {Lyry,...,y2" 2y} and B, = {y,zy, ..., a" %y}

(i) p*q" = 3.

If y* = 1, then simply we may take A = {z,1,yxy,yr?y} and B =
{1,y, Ty, z?y} and get a result. If y? # 1, then we take A = {1} Uy(x)
and B = {1} U (x)y. Note that |AB] < 9. Since 1 is distinct from all
elements in (r)y - y(x), there should be at least one relation of the form
y* = r'y?x’ in (x)y - y(r), a subset of BA. Hence 32 lies in N((z)).
Thus every element of order 3, 5 or 7 lies in N:{x)) and so does an
element of order 6. For other cases we may take A = {1,z zy, ry?}
and B = {1,y,y% y*}. Suppose that 7 < |y|, the order of y and y ¢
N((x)). Then |AB| = 10. Now BA = BU Bx U Bxy U Bry?. Clearly
BN By =BnNBry=0. Thus Bir N Bry # 0. Note that the once we
have a relation for xy, then the other elements are fixed automatically,
for example, if zy = y?z, then yry = y3z and so cn. Since y & N({z)),
we have the only non-trivial possible relation zy = y~!'x. The other
cases are easily removed. For example, suppose 2y = y?z. Then by
simple calculations we have BA = BU{x,yx, ...,y "z} and |BA| > 10,
a contradiction. Let xy = y~'x, that is, z = yry. However this relation
and the above relation 3% = r*y?27 can not be compatible. Finally we
assume that |y| = 4. Then |AB| == 8. Clearly B By = BN Bry = 0
and so Bx should be Bxy. Hence ry = y3x, i.e., r = yry. If |ry| # 4,
then by the above argument xy = N and so doss y. Thus |ry| = 4,
that is, ryzyzyry = v* = r = 1, a final contradiction.

(iii) p*q' = 2.

This case is already treated in Lemma 1.

Hence for every y € G, y lies in N((z")) for some i. Note that there

are only two minimal subgroups, (:ﬂ’ﬁqhw and (r”vlqw of (x). That
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is y € N((z2°¢7")) or N({z”""'7"}). Since no group is a union of two
s—1 1

proper subgroups, G = N((zP"?" ")) or N({zP" 7). O

COROLLARY 6. Let G be 2-cardinally permutable to (m,n). If M
is an abelian maximal subgroup containing an element of order > n,
then M contains a nontrivial normal subgroup of (3.

Proof. Let M contain an element z of order > n. Then for y € G\M,

y € N({z")) for some i by the proof of the above theorem. Since
M c N({z")) and y € N((z')), (z*} is normal in G. O

As an easy consequence of above corollary, we have that A4, the
alternating group of degree 4, is the smallest non-trivial finite group
which is not 2-cardinally permutable. For, if A4 is 2-cardinally per-
mutable, every subgroup of order 3 is normal, a contradiction.

Finally we consider a finiteness condition on 2-cardinally permutable
groups. Recall that a group is called locally graded if every finitely
generated non-trivial subgroup has a finite non-trivial quotient.

THEOREM D. IfG is a locally graded 2-cardinallv permutable group,
then it is abelian or locally finite.

Proof. Let G be finitely generated and periodic, and let N the fi-
nite residual of G. Then G is center-by-(finite exponent). Hence G/N
is a residually finite center-by-(finite exponent) and collapsing. Now
G/N is nilpotent-by-finite and so finite. Suppose N # 1. Since G is
locally graded, N has a non-trivial finite factor group N/K. But then
G /coreq(K) is finite, contrary to the choice of N. Hence G is finite. []
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