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MYRBERG-AGARD DENSITY POINTS
AND SCHOTTKY GROUPS

ILYoNG DO AND SUNGBOK HONG

1. Introduction

Let I be a discrete subgroup of hyperbolic isometries acting on the
Poincaré disc B™,m > 2. The discrete group I acts properly discon-
tinously in B™, and acts on @B™ as a group of conformal homemor-
phisms, but need not act properly discontinously on 8B™. The action
of I' divides B™ into two sets. The ordinary set Q(T') is the largest
open subset of 9B™ on which I' acts discontinously. The complement
of (T) in B™ is the limit set, denoted by A(T) or simly A. The limit
set A(T) is the set of accumulation points of the orbit I'(z) for one,
hence for every, point z € B™. Equivalently, the limit set is the small-
est nonempty closed set in 9B™. If A contains two or fewer points,
' is elementary, and contains a free abelian subgroup of finite index.
Otherwise, I' is nonelementary. In this paper, we always assume that
I' is nonelementary.

It is easy to see that A(T') = A(I) for any nontrivial normal sub-
group IV of . Also, if z is any point of dB™, then the accumulation
points of any orbit of z under I lie in A(T"). For a nonelementary group
I', define CH(A) to be the smallest nonempty convex set in B™ which
is invariant under the action of T'; this is the convex hull of T". The
boundary at infinity of CH(A) is precisely A, and so CH(A) contains
every geodesic line in B™ both of whose endpoints at infinity are in A.
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The limit point p € A(T') is said to be a conical limit point (or a
point of approximation) for I if for every z € B™ there is a sequence
[p — vn ()]

1 —[yn(z)|
will give a geometric characterization of conical limit points due to

Beardon-Maskit in section 2. A limit point p is called a controlled
concentration point if it has a neighborhood U/ such that for every
neighborhood V' of p, there exists an element v € I" so that p € v(U)
and ¥(U) ¢ V. Three characterizations of controlled concentration
points and its relation with recurrent geodesics are given in [AHM].
From each characterization, it is 1iot hard to see that every controlled
concentration point is a conical limit point.

When we study controlled concentration points via recurrent geode-
sics, we come up with a new kind of limit points which are called
Myrberg-Agard density points. That is a mild modification of “density
points” described in S. Agard’s paper (see [A]) in which he proved the
set of “density points” has full Hausdorff measure in the limit set if
the given group is of divergence type which means the Poincaré series
of the group I' diverges at exponent m — 1. Analogously, we proved
the set of Myrberg-Agard density points has full Patterson-Sullivan
measure in the limit set if the group is of divergence type in general
sense. Namely, the Poincare series of the group diverges at the critical
exponent. (See [HJ).

In this paper we give a topological characterization of Myrberg-
Agard density points by using admissible pairs of open neighborhoods
and give an example for Schottky groups. This together with a topo-
logical characterization of conical limit points might give an overall
description of topological characterizations of certain limit points. By
a neighborhood of p, we will always mean an open neighborhood of p
in 0B™.

Now we need to state some definitions for a topological characteri-
zation of Myrberg-Agard density points.

{mw} C T on which the sequence remains bounded. We

DEFINITION 1.1. One says that a pair of open sets (U1, Us) in 9B™
is an admissible pair if

(1) U; - Lrla

(2) U, OA# 0 and

(3) Ag U;.
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An admissible pair (U;,Us) is called an admissible pair at p if both
Ui and U, are neighborhoods of p.

DEFINITION 1.2. One says that an admissible pair (U, U,) can be
concentrated at p if for every neighborhood V of p, there exists an
element v € I' such that p € v(Uz) C v(U;) C V.

DEFINITION 1.3. A geodesic A is called a geodesic for T' if both
endpoints of A are limit points of I'. The limit point p is called a
Myrberg- Agard density point for I if whenever p is an oriented geodesic
for I' and « is a geodesic ray ending at p in CH(A) (convex hull of A),
there is a sequence of elements {;} such that {v;(a)} converge to 4 in
an oriented sense.

It is not difficult to see that the set of Myrberg-Agard desity points
is I-invariant and every Myrberg-Agard density point is a controlled
concentration point. (See [A-H-M]).

We will assume familiarity with the basic concepts of Mébius groups
as exposed, for example, in [B]. Of particular importance is the follow-
ing result, proven on pp. 97-98 of [B].

DouBLE DENSITY THEOREM. Let I' be a nonelementary group of
Méobius transformations of 9B™, let V) and V; be open sets both meet-
ing the limit set of I". Then there exists a loxodromic element of T’ with
a fixed point in V] and a fixed point in V5.

We thank the referee for prompting a number of improvements to
the original manuscript.

2. Conical limit points

In this section, we will examine two geometric characterizations of
conical limit points for nonelementary groups and we will give a topo-
logical characterization of conical limit points using geometric ones.

PROPOSITION 2.1. The point p € dB™ is a conical limit point for T
if and only if there is a geodesic ¢ ending at p such that for any point
x € B™ there are infinitely many I'-images of o within a bounded
hyperbolic distance of z.
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Proof. See Theorem 2.4.1 in [N].

REMARK. If the limit point p is a conical limit point and if we fix
x = 0, then the above Proposition implies that there is a compact
ball K in B™ centered at 0 so that infinitely many I'- images of o (a
geodesic ending at p ) meet the ball K.

ProOPOSITION 2.2. The point p € B™ is a conical limit point for
I' if and only if there exists a sequence {v,} of distinct elements of T"
such that v, (p) converges to q and v,(0) converges to r where r # q.

Proof. Tt is an immediate consequence of remark after Proposition
2.1 or see VL.B.4 in [M].

Now we give a topological characterization of conical limit points
using admissible pairs at the limit point.

THEOREM 2.3. The limit point p is a conical limit point for I' if
and only if there exists an admissible pair (U;,U,) at p which can be
concentrated at p.

Proof. Suppose that there exists an admissible pair (U, Us) at p
which can be concentrated at p. Then there exist a neighborhood V,,
of p and a sequence {~,} of " such that

diamV,, — 0, 7, (Uy) Z V,, and p € v,(Us2).

Without loss of generality, we may assume that every V,, is “round” disk
and 0 is not in the half space HS; bounded by hyperplane determined
by Vi. That means HS; N 9B™ = V;. Then for the geodesic ray
a from 0 to p, v, '(a) crosses U; and Uy. Because v, !(p) € Uy,
Ui C v, 1 (Vy) and Uz C Uy, it follows that ~; 1(0) converges to 7 and
v 1(p) converges to q where g # 7. This shows that p is a conical limit
point from Proposition 2.2.

Conversely, suppose that p is a conical limit point. Then by Propo-
sition 2.2, there exists a sequence {v,} C I" such that v, (0) converges
to r and v, ! (p) converges to ¢ where r # g. Let A denote the geodesic
ray from 0 to p and u denote the geodesic from r o q.

Let H; denote the hyperplane inn B™ that passes through p; and be
perpendicular to A at p; where p, is a point on 'y (K) N A. Here K
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denotes the compact ball as in the remark after Proposition 2.1. Let
Ui be the component of 9B™ —0H, containing p. Since v;(K)NX #£ 0,
for each 4, we choose p; € v;(K) N A . Let v; denote the unit tangent
vector to A at p;. Since the unit tangent bundle T3 (K) of K is compact,
the sequence {dv;"(v;)} converges to wg for some wq € Ty (K). Hence
by passing to a subsequence (choose a new H;, and a new U, if it
is necessary), we may have that v,y '(U;) meets A\ with its normal
vector at the intersection points making angles within small enough of
7/2 with the tangent vector to A. Then for each n, y,77 ' (U;) contains
p and the diameters limit to 0. Hence ~,7y, 1(U}) forms a local base
at p. Let Hp denote the hyperplane that passes through p, and be
perpendicular to A at p; where p; is a point on y2(K)NA . Let Us be the
component of 3B™ —9H, containing p with U, C U;. Again by passing
to a subsequence of the given sequence if it is necessary, we see that
q € v 1(Uz) because ;" 1(A) converges to x and v, H(Us) is orthogonal
to y; '(A) at 77 }(p2). (See Figure 1 and 2.) Since {7y H(U1)} forms
a local base at p and p € y,v; 1 (Uy), (U1, Us) is an admissible pair at p
which can be concentrated at p. This completes the proof of Theorem
2.3.

FiGurE 1 FIGURE 2

From the above characterization, we can deduce the following corol-
lary.
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COROLLARY 2.4. Every controlled concentration point is a conical
limit point.

Proof. Suppose that p is a controlled concentration point. Then
there exists a neighborhood U which can be concentrated at p. Hence
if we choose Uy = U and U, is any neighborhood of p with U; C U;.
Here U, takes the role of a neighborhood V of p in the definition of
controlled concentration points. Then (U;,Us) is an admissible pair
which can be concentrated at p. This implies that p is a conical limit
point from Theorem 2.3. This completes the proof of Corollary 2.4.

3. Myrberg-Agard density points and an example

Now we give one of topological characterization of Myrberg-Agard
density points and give an example for the case that I is a two generator
Schottky group.

THEOREM 3.1. A limit point p is a Myrberg-Agard density point
for I if and only if every admissible pair (Uy,Us) can be concentrated
at p.

Proof. Let X be a geodesic ending at p, whose other end point is a
limit point different from p. Let i be any geodesic for I'. Construct a
sequence of neighborhoods W, and Z; of the endpoints of x such that
p is oriented from W; to Z; and such that for each i, W, N Z;, = 0
and diamW, — 0, diamZ; — 0. Observe that each (0B™ — W,, Z;)
is an admissible pair. Let V' be a neighborhooc of p whose closure
does not contain the other endpoint of \. Chcose v; € I' so that
peNHZ) C v 1 (@B™ —W;) C V. Then v:(A) runs from W; to Z,.
Therefore ;(A) — g in an oriented sense. By the construction of ~;,
for every geodesic ray « (ending at p) of A, v;(«) converges to p.

Conversely, we assume that p is a Myrberg-Agard density point and
(Ur,Us) is any admissible pair. Consider the following two cases.

Case 1. p € Uy. Choose ¢ € A — U,. Let A be the geodesic from
q to p and let o be a geodesic ray (ending at p) of A\. Because p is
a Myrberg-Agard density point, there is a sequence {v,} such that
{7 ()} converge to ) in an oriented sense. If we denote a by [0, p)
then the above convergence implies v, ' (x9) — q and v, (p) — p. We
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may choose large enough n so that p € +, (Uz), because ;! (p) converge
to p, so for large enough n, v, '(p) € Us. Since we may choose a as
we wish, by taking the starting point =g of a as close to p as we want
if it is necessary, we may assume that {v,(U;)} is contained in a local
base at p. Therefore for a neighborhood V' of p, we may choose large
enough n so that p € v,(Uz) C v, (Uy) C V.

Case 2. pis not in Uy. Let V be any neighborhood of p. Because the
Myrberg-Agard density points is I'-invariant, and the orbit of any limit
point is dense in the limit set, there exists 7 € I' so that 7(p) € Us.
By case 1, there exists ¥ so that 7(p) € v(Uz) < v(Uy) C 7(V), so
p €7 y(U;) C 7714(U;) C V. This completes the proof of Theorem
3.1.

As an immediate consequence, we have the following corollary.

COROLLARY 3.2. Every Myrberg-Agard density point is a controlled
concentration point.

Proof. Let p be a Myrberg-Agard density point and fix a neighbor-
hood U; of p. For a neighborhood V of p, choose a neighborhood U,
of psothat Uy ¢ V and Us C [/;. Then (Uy,Us) is an admissible
pair at p. Since p is a Myrberg-Agard density point, (U, Us) can be
concentrated at p by Theorem 2.1. Therefore there exists an element
7 such that p € y(Uz) (C v(V)) and 4(U1) C V. This implies that p is
a controlled concentration point.

An example: Schottky groups

Now we will obtain examples of Myrberg-Agard density points. For
simplicity, we will work with a 2-generator m-dimensional Schottky
group I', although it will be apparent that the same phenomena occur
for other examples (in particular, with more generators). The limit set
of I is a Cantor set which can be understood quite explicitly using the
sequence of crossings of a geodesic ray (ending at the limit point) with
the translates of two fixed sides of a fundamental domain.

To define T', we work in the Poincaré unit disc B™. Let a and o
be the geodesic hyperplanes in B™ which lie in the spheres in R™
with centers at the points (1.1,0,...,0) and (-1.1,0....0), say. Similarly,



84 Ilyong Do and Sungbok Hong

let b and b lie in the spheres with centers at the points (0....,0,1.1)
and (0....,0,-1.1). Choose a,a’.b, b’ so that they are mutually disjoint.
As the generators of T', select two orientation-preserving hyperbolic
isometries: one carrying a to a’ and one carrying b to . Fix one of
the direction normal to a as the positive direction. It determines a
positive normal direction for each translate of a. Similarly, we label b
and its translates. A crossing of an oriented geodesic of geodesic ray in
B™ with a translate of a or b will be called a positive crossing when it
agrees with the selected direction; otherwise it wil be called a negative
crossing.

Suppose « is a geodesic ray in B™, which does 1ot lie in a translates
of a and b. Then a crosses a sequence (finite or infinite, possibly of
length 0) of translates of @ and b. (When a geodesic ray starts in a
translate, we count that intersection as a crossing.) To «, we associate
a sequence S(a) = x;x9x3...0f elements in the et {a,a@, b, b} in the
following way. If the nth crossing of « with the union of the translates
of @ and b is a positive crossing with a translate of a, then =,, = a. If the
nth crossing is a negative crossing with a translate of a, then x,, = @.
For crossings with translates of b. the elements ¢ and b are assigned
similarly. Note that S(«) is an inlinite sequence if and only if a ends
at a limit point of I', and note that, for each seqience § = zz9x3...
of elements of the set {a,@, b, b} (with the property that for no n is
TpTpyy in the set {a@, @a,bb,bb}). there exists a geodesic ray o with
S(a) = §. Using these sequences. the Myrberg-Agard density points
of I' can be characterized as follows.

THEOREM 3.3. The endpoint p of a geodesic ray « is a Myrberg-
Agard density point for T if and only if S(a) = x 7973 ... has the
following property. For all positive n and all positive k, there exists
arbitrary large m such that x,; == x,,; for every i with 0 < i < k.

Proof. Denote by ¢, the translate of a or b whose crossing with
a determines z,, and by W, the neighborhood of p determined by
Cn. Suppose the condition in the theorem hold and (U),U,) is an
admissible pair. First of all, if (U;,Us) is an admissible pair at p
and U, is contained in Wy, then for a neighborhood V' of p choose !
and k such that W, contains Uy and W, is contained in U,. Since
diam{W;} converges to 0, we mav assume that for large enough m,
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W, is contained in V. Now by hypothesis, we have Tipi = Tonts
for 0 < i < k. Let v € T be the element that translates ¢; to ¢,
then p € y(Uz) C v(U1) C V. If W; is contained in Uj, then by
using Double Density Theorem, choose a loxodromic element -, whose
attracting fixed point is sufficiently close to p so that v;'(p) € Uy and
repelling fixed point is in B™ —U7. For such a loxodromic element o0,
we may assume that p € vo(Uz) C v(Uy) C W) by taking some powers
of 7. Now repeat the same argument for the pair (vo(U1), v0(Us)) as
above.

Secondly, if (Uy, Us) is not an admissible pair at p then because the
orbit of any limit point is dense in the limit set, there exists 7 € T
such that 7~!(p) € Us. Therefore p € 7(Uz) C 7(U;) and this implies
that (7(U1),7(Uz)) is an admissible pair at p. Hence we may apply
the same argument as in the first case. Then by Theorem 3.1, p is a
Myrberg-Agard density point.

Conversely, suppose p is a Myrberg-Agard density point. Then by
Theroem 3.1, every admissible pair can be concentrated. Hence for
any n, k and any m, there exists v € T" so that v{W,,) C W,,, and p €
¥(Wnyk). Here we use triple (W,,, W, 4k, W,,,) in replace of (U1,Us,V)
to apply theorem 3.1. This v must move ¢,4; onto ¢;4; for 0 < i < k
and some ! > m, c.f. proposition 5.1 of [AHM]. Thus the condition of
the theorem holds and this completes the proof.
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