Fixed points of a certain class of mappings in uniformly convex banach spaces

  • Thakur, Balwant-Singh (Govt. B. H. S. S. Gariaband, Dist. Raipur, M. pp. 493889, India) ;
  • Dep (Department of Mathematics, Dong-A University, Pusan 607-714)
  • Published : 1997.08.01

Abstract

In this paper, we prove in p-uniforlmy convex space a fixed point theorem for a class of mappings T satsfying: for each x, y in the domain and for n = 1, 2, 3, $\cdots$, $$ \left\$\mid$ T^n x - T^n y \right\$\mid$ \leq a \cdot \left\$\mid$ x - y \right\$\mid$ + b(\left\$\mid$ x - T^n x \right\$\mid$ + \left\$\mid$ y - T^n y \right\$\mid$) + c(\left\$\mid$ c - T^n y \right\$\mid$ + \left\$\mid$ y - T^n x \right\$\mid$, $$ where a, b, c are nonnegative constants satisfying certain conditions. Further we establish some fixed point theorems for these mappings in a Hilbert space, in $L^p$ spaces, in Hardy spaces $H^p$ and in Sobolev spaces $H^{p,k}$ for 1 < p < $\infty$ and k $\leq$ 0. As a consequence of our main result, we also the results of Goebel and Kirk [7], Lim [8], Lifshitz [12], Xu [20] and others.

Keywords

References

  1. n introduction to the Theory of Distribution J. BarrosNeto
  2. Pacific J. Math. v.86 Normal Structure coefficient for Banach space W. L. Bynum
  3. Nonlinear Anal. TMA. v.9 Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure E. Casini;E. Maluta
  4. Theory of Nonlinear Operators. Proc. Summer School, GDR On densifying and related mappings and their applications in nonlinear functional analysis, J. Danes
  5. Interscience v.Ⅰ Linear Operators N. Dunford;J. Schwarz
  6. Theory of $H^p$ spaces W. H. Duren
  7. Studia. Math. v.7 A fixed point theorem for transformations whose iterates have uniform Lifshitz constant K. Goebel;W. A. Kirk
  8. Nonlinear Anal. TMA. v.7 Fixed point theorems for uniformly Lipschitzianmappings in $L^P$ spaces T.C. Lim
  9. Proc. Amer. Math. Soc. v.88 On the normal structure coefficient and the bounded sequence coefficient T. C. Lim
  10. Classical Banach spaces II-Function spaces J. Lindenstrauss;L. Tzafriri
  11. Progress in Approximation Theory An L p inequalities and its applications to fixed point theory and approximation theory T. C. Lim;H. K. Xu;Z. B. Xu,
  12. Voronez Gos. Univ. Trudy Math. Fak. (Russian) v.16 Fixed point theorem for operators in strongly convex spaces E. A. Lifshitz
  13. Mat. Zametki;Math. Notes.(Russian) v.43 Jung's constant of the space $L^P$ S. A. Pichugov
  14. J. Math. Anal. Appl. v.121 Strongly unique best approximations and centers in uniformly convex spaces B. Prus;R. Smarzemski
  15. Atti. Sem. Mat. Fis. Univ. Modena v.38 On Bynum's fixed point theorem S. Prus
  16. Rend. Circ. Mat. Palermo v.XL no.2 Some estimates for the normal structure coefficient in Banach spaces S. Prus
  17. J. Approx. Theory v.51 Strongly unique best approximations in Banach spaces II R. Smarzewski
  18. J. Math. Anal. Appl. v.150 On the inequality of Bynum and Drew R. Smarzewski
  19. J. Math. Anal. Appl. v.152 Fixed point theorems for uniformly Lipschitzian semigroups in uniformly convex Banach spaces H. K. Xu
  20. Nonlinear Anal. TMA. v.16 Inequalities in Banach spaces with applications H. K. Xu
  21. J. Math. Anal. Appl. v.95 On uniformly convex function C. Zalinescu