UNIQUENESS OF BASES FOR ALMOST LINEAR SPACES

SUNG MO IM AND SANG HAN LEE

O. Mayer[9] introduced an almost linear space (als), a generalization of a linear space. The notion of a basis for an als was introduced by G. Godini[3]. Later, many properties of an als established by a number of authors. In this paper, we prove that the cardinality of bases for an als is unique. All spaces involved in this paper are over the real field \mathbb{R} . Let us denote by \mathbb{R}_+ the set $\{\lambda \in \mathbb{R} : \lambda \geq 0\}$. We recall some definitions used in this paper.

An almost linear space (als) is a set X together with two mappings $s: X \times X \to X$ and $m: \mathbb{R} \times X \to X$ satisfying the conditions $(L_1) - (L_8)$ given below. For $x, y \in X$ and $\lambda \in \mathbb{R}$ we denote s(x, y) by x + y and $m(\lambda, x)$ by λx , when these will not lead to misunderstandings. Let $x, y, z \in X$ and $\lambda, \mu \in \mathbb{R}$. $(L_1) x + (y + z) = (x + y) + z$; $(L_2) x + y = y + x$; (L_3) There exists an element $0 \in X$ such that x + 0 = x for each $x \in X$; $(L_4) 1x = x$; $(L_5) \lambda(x + y) = \lambda x + \lambda y$; $(L_6) 0x = 0$; $(L_7) \lambda(\mu x) = (\lambda \mu)x$; $(L_8) (\lambda + \mu)x = \lambda x + \mu x$ for $\lambda \geq 0$, $\mu \geq 0$. We denote -1x by -x, and x - y means x + (-y). For an als X we introduce the following two sets:

$$V_X = \{x \in X : x - x = 0\}$$

 $W_X = \{x \in X : x = -x\}.$

 V_X and W_X are almost linear subspaces of X (i.e., closed under addition and multiplication by scalars) and, in fact, V_X is a linear space. Clearly an als X is a linear space iff $V_X = X$ iff $W_X = \{0\}$. Note that $V_X \cap W_X = \{0\}$ and $W_X = \{x - x : x \in X\}$.

Received January 27, 1997.

1991 AMS Subject Classification: 46B99, 46A15.

Key words and phrases: Almost linear space, Almost linear subspace.

A norm on an als X is a functional $||\cdot||: X \to \mathbb{R}$ satisfying the conditions $(N_1)-(N_3)$ below. Let $x,y,z\in X$ and $\lambda\in\mathbb{R}$. $(N_1)||x-z||\leq ||x-y||+||y-z||$; $(N_2)||\lambda x||=|\lambda|||x||$; $(N_3)||x||=0$ iff x=0. An als X together with $||\cdot||: X \to \mathbb{R}$ satisfying $(N_1)-(N_3)$ is called a normed almost linear space (nals).

A subset B of an als X is called a basis for X if for each $x \in X \setminus \{0\}$ there exist unique sets $\{b_1, b_2, ..., b_n\} \subset B$, $\{\lambda_1, \lambda_2, ..., \lambda_n\} \subset \mathbb{R} \setminus \{0\}$ (n depending on x) such that $x = \sum_{i=1}^{n} \lambda_i b_i$, where $\lambda_i > 0$ for $b_i \notin V_X$. Clearly, if B is a basis for X then $0 \notin B$.

In contrast to the case of a linear space, there is an *als* which has no basis.

EXAMPLES 1. (1) Let $A_1 = \{(\alpha, 0) : \alpha \in \mathbb{R}\}, A_2 = \{(0, \beta) : \beta \in \mathbb{R}_+\}$ be subsets of \mathbb{R}^2 and let $X = A_1 \cup A_2$. Define s(x, y) = x + y if both $x, y \in A_i$, i = 1, 2, and s(x, y) = s(y, x) = y if $x \in A_1$, $y \in A_2 \setminus \{(0, 0)\}$. And define $m(\lambda, x) = \lambda x$ if $x \in A_1$, $m(\lambda, y) = |\lambda| y$ if $y \in A_2$. Let $0 \in X$ be the zero element $(0, 0) \in \mathbb{R}^2$. Then X is an als. We have $V_X = A_1$ and $W_X = A_2$. Also, X has no basis.

- (2) Let $X = \{[a,b] \subset \mathbb{R} : a \leq b\}$. Define $s(A,B) = \{a+b : a \in A, b \in B\}$ and $m(\lambda,A) = \{\lambda a : a \in A\}$ for $A,B \in X, \lambda \in \mathbb{R}$. The element $0 \in X$ is $\{0\} \subset \mathbb{R}$. Then X is an als. We have $V_X = \{\{a\} \in X : a \in \mathbb{R}\}$ and $W_X = \{[-a,a] \in X : a \geq 0\}$. And $B = \{[-1,1],\{1\}\}$ is a basis for X. $B_1 = \{\{1\}\}$ is a basis for V_X . Also, $Y = \{[a,b] \in X : a \leq 0, b \geq 0\}$ is an almost linear subspace of X. And $B_2 = \{[-1,0],[0,1]\}$ is a basis for Y.
- (3) Let $e_1 = (1,0)$, $e_2 = (0,1)$ in \mathbb{R}^2 , and let $X = \{\alpha e_1 + \beta e_2 : \alpha \in \mathbb{R}, \ \beta \in \mathbb{R}_+\}$. Define s(x,y) = x+y for $x,y \in X$, and $m(\lambda,x) = (\lambda \alpha)e_1 + (|\lambda|\beta)e_2$ for $x = \alpha e_1 + \beta e_2 \in X$, $\lambda \in \mathbb{R}$. The element zero of X is $(0,0) \in \mathbb{R}^2$. Then X is an als and $\{e_1,e_2\}$ is a basis for X. Let $Y = \{\alpha e_1 + \beta e_2 \in X : \alpha, \beta \in \mathbb{R}, \ \beta > 0\} \cup \{(0,0)\}$. Then Y is an almost linear subspace of X. But Y has no basis.

Now, we give some propositions needed in the sequel.

PROPOSITION 2 ([3]). Let X be an als with a basis B. Then,

(a) The relations x + y = x + z, $x, y, z \in X$ imply that y = z.

- (b) For each $x \in X \setminus V_X$, there exist unique $b_1, b_2, ..., b_n \in B \setminus V_X$, $v \in V_X$, and $\lambda_1, \lambda_2, ..., \lambda_n > 0$ such that $x = \sum_{i=1}^n \lambda_i b_i + v$.
- (c) There exists a basis B' of X with the property that for each $b' \in B' \setminus V_X$ we have $-b' \in B' \setminus V_X$. Moreover $\operatorname{card}(B \setminus V_X) = \operatorname{card}(B' \setminus V_X)$. We shall call such a basis B' a symmetric basis.
- (d) For $x, y \in X$, $x + y \in V_X$ implies $x, y \in V_X$.
- (e) $B \cap V_X$ is a basis for V_X .
- (f) The relations $w_1 + v_1 = w_2 + v_2$, $w_i \in W_X$, $v_i \in V_X$, i = 1, 2 imply that $w_1 = w_2$ and $v_1 = v_2$.

An almost linear subspace Y of an als X with a basis does not have a basis in general (see, Example 1(3)). But we have the following:

PROPOSITION 3. If an als X has a basis, then W_X has a basis.

Proof. Let B be a symmetric basis for X. Let $B_1 = \{b - b : b \in B \setminus V_X\} \subset W_X$. We show that B_1 is a basis for W_X . Let $w \in W_X \setminus \{0\}$. By Proposition 2(b), $w = \sum_{i=1}^n \lambda_i b_i + v$, where $b_i \in B \setminus V_X$, $b_i \neq b_j$ for $i \neq j, \lambda_i > 0, \ 1 \leq i \leq n, \ v \in V_X$. Then $-w = \sum_{i=1}^n \lambda_i (-b_i) - v$ and so $w = (1/2)(w - w) = \sum_{i=1}^n (\lambda_i/2)(b_i - b_i)$. To show the uniqueness of this representation, suppose

$$w = \sum_{i=1}^k \lambda_i (b_i - b_i) = \sum_{i=1}^k \mu_i (b_i - b_i),$$

where $b_i \in B \setminus V_X$, $b_i - b_i \neq b_j - b_j$ for $i \neq j$, and $\lambda_i, \mu_i \geq 0$, $1 \leq i \leq k$. Then $b_i \neq \pm b_j$ for $i \neq j$, and since for each $b \in B \setminus V_X$, $-b \in B \setminus V_X$ we must have $\lambda_i = \mu_i$, $1 \leq i \leq k$. \square

The converse to Proposition 3 is not true. Indeed, in Example 1(3) $\{e_2\}$ is a basis for W_Y . But Y has no basis. In general, we have the following result.

PROPOSITION 4. Let X be an als with a basis. If W_X has a basis, then $W_X + V_X$ has a basis.

Proof. Let B_1 be a basis for W_X and B_2 a basis for the linear space V_X . By Proposition 2(f), $B = B_1 \cup B_2$ is a basis for $W_X + V_X$. \square

COROLLARY 5. For a split als $X = W_X + V_X$ with a basis B,

$$\operatorname{card}(B) = \operatorname{card}(B_1) + \operatorname{card}(B_2),$$

where B_1 and B_2 are bases for W_X and V_X , respectively.

REMARK. For a linear space X with a basis B, let Y, Z be subspaces of X with X = Y + Z and $Y \cap Z = \{0\}$. If B_1 and B_2 are bases for Y and Z respectively, then $\operatorname{card}(B) = \operatorname{card}(B_1) + \operatorname{card}(B_2)$. But it is not true when X is an als. Indeed, in Example 1(2) $X = V_X + Y$ and $V_X \cap Y = \{0\}$. However, $\operatorname{card}(B) < \operatorname{card}(B_1) + \operatorname{card}(B_2)$.

For an als X, we introduce the following set

$$U_X = \{x \in X : x \notin V_X\} \cup \{0\}.$$

Then U_X is an almost linear subspace of X by Proposition 2(d). In Example 1(2), $U_X = \{[a,b] \subset \mathbb{R} : a < b\}$ has no basis. In general, we have the following theorem.

THEOREM 6. Let X be a nals. If U_X has a basis, then $U_X = X$.

Proof. Let B be a basis for U_X and $b_1 \in B$. For any $v \in V_X$, $v + b_1 \in U_X$ and $-v + b_1 \in U_X$. Let

$$v + b_1 = \sum_{i=1}^{n} \lambda_i b_i, \quad -v + b_1 = \sum_{i=1}^{n} \mu_i b_i,$$

where $\lambda_i, \mu_i \in \mathbb{R}_+$, $b_i \in B$. Then $2b_1 = \sum_{i=1}^n (\lambda_i + \mu_i) b_i$. By the uniqueness of expression by a basis, we have $\lambda_1 + \mu_1 = 2$, $\lambda_i + \mu_i = 0$ if i > 1. However, since each $\lambda_i, \mu_i \in \mathbb{R}_+$, we find $\lambda_i = \mu_i = 0$ for all i > 1. This implies

$$v + b_1 = \lambda_1 b_1.$$

If $\lambda_1 > 1$, then $b_1 = \lambda_1 b_1 - v = (\lambda_1 - 1 + 1)b_1 - v = (\lambda_1 - 1)b_1 - v + b_1$. Since $(\lambda_1 - 1)b_1 - v \in U_X$ and U_X has a basis, we can use cancellation law. We have $(\lambda_1 - 1)b_1 - v = 0$, whence $(\lambda_1 - 1)b_1 = v \in V_X$, a contradiction. If $\lambda_1 < 1$, then $v + b_1 = v + (1 - \lambda_1 + \lambda_1)b_1 = v + (1 - \lambda_1)b_1 + \lambda_1 b_1$. We have $0 = v + (1 - \lambda_1)b_1$, whence $(1 - \lambda_1)b_1 = -v \in V_X$, a contradiction. Thus $\lambda_1 = 1$ and $v + b_1 = b_1$. Since X is a nals, v = 0(cf. [8; Proposition 1.2]). Therefore $V_X = \{0\}$, and the proof is completed. \square

REMARK. The statement of Theorem 6 is false if X is an als. Indeed, in Example 1(1) $U_X = W_X$ and $U_X \neq X$, but $B = \{e_2\}$ is a basis for U_X .

THEOREM 7. Let B and B' be bases for an als X. Then, up to positive scalar times and ignoring the V_X part, the two sets are identical. More precisely, there is a bijective mapping ϕ on $B \setminus V_X$ onto $B' \setminus V_X$ such that, for each $b \in B$,

$$\phi(b) = v(b) + \lambda(b)b,$$

where $v(b) \in V_X$, $\lambda(b) > 0$.

Proof. For simplicity, let $b = b_1 \in B \setminus V_X$. Let $b_1 = u + \sum_{i=1}^{i=k} \lambda_i b_i'$ with $u \in V_X$, $\lambda_i > 0$ and $b_i' \in B' \setminus V_X$; and let $b_i' = u_i + \sum_j \mu_{ij} b_j$, where $u_i \in V_X$, $b_j \in B \setminus V_X$ and $\mu_{ij} \geq 0$ (we need to allow some $\mu_{ij} = 0$). Then

$$b_1 = u + \sum_{i=1}^k \lambda_i b_i'$$

$$= u + \sum_i \lambda_i \left(u_i + \sum_j \mu_{ij} b_j \right)$$

$$= u + \sum_i \lambda_i u_i + \sum_j \left(\sum_i \lambda_i \mu_{ij} \right) b_j.$$

By the uniqueness of expression by a basis, we have

$$u + \sum_{i} \lambda_{i} u_{i} = 0, \ \sum_{i} \lambda_{i} \mu_{i1} = 1, \ \sum_{i} \lambda_{i} \mu_{ij} = 0 \ \text{if} \ j > 1.$$

However, since each $\lambda_i > 0$ and $\mu_{ij} \geq 0$, we find $\mu_{ij} = 0$ for all $i \geq 1$ and all j > 1. This implies $b'_i = u_i + \sum_j \mu_{ij} b_j = u_i + \mu_{i1} b_1$, and $\mu_{i1} > 0$ since $b'_i \notin V_X$. We have

$$b_1 = \frac{1}{\mu_{i1}} \left(-u_i + b_i' \right).$$

Since $\{b_1', b_2', \dots, b_k'\}$ is in a basis B', i can only be 1. Thus, $b_1' = u_1 + \mu_{11}b_1$. Hence we can define

$$\phi: B \setminus V_X \to B' \setminus V_X$$

by $\phi(b) = v(b) + \lambda(b)b$, where $v(b) \in V_X$, $\lambda(b) > 0$. Similarly, we can define

$$\phi': B' \setminus V_X \to B \setminus V_X$$

by $\phi'(b') = v(b') + \lambda(b')b'$, where $v(b') \in V_X$, $\lambda(b') > 0$. For each $b \in B \setminus V_X$,

$$\begin{split} (\phi' \circ \phi)(b) &= \phi'(\phi(b)) \\ &= v(\phi(b)) + \lambda(\phi(b))\phi(b) \\ &= v(\phi(b)) + \lambda(\phi(b))(v(b) + \lambda(b)b) \\ &= (v(\phi(b)) + \lambda(\phi(b))v(b)) + (\lambda(\phi(b))\lambda(b))b. \end{split}$$

Since $\{(\phi' \circ \phi)(b), b\}$ is in a basis $B \setminus V_X$, $(\phi' \circ \phi)(b) = b$, whence $\phi' \circ \phi = I_{(B \setminus V_X)}$. Similarly, $\phi \circ \phi' = I_{(B' \setminus V_X)}$. Therefore ϕ is bijective. \square

COROLLARY 8. Let X be an als. If U_X has a basis, then the basis for U_X is unique up to positive scalar multiple for each element.

Now, we shall give our main theorem.

THEOREM 9. Any two bases B and B' of an als X have the same cardinal number.

Proof. By Proposition 2(e), $B \cap V_X$ and $B' \cap V_X$ are bases for V_X . Since any two vector bases of a linear space have the same cardinal number,

$$\operatorname{card}(B \cap V_X) = \operatorname{card}(B' \cap V_X).$$

However, by Theorem 7,

$$\operatorname{card}(B \setminus V_X) = \operatorname{card}(B' \setminus V_X).$$

Therefore card(B) = card(B'). \square

References

- M. M. Day, Normed linear spaces, Berlin Göttingen Heidelberg, Springer-Verlag (1962).
- [2] N. Dunford and J. Schwartz, Linear operators. Part I, Pure and applied Mathematics, 7., New York, London, Interscience (1958).
- [3] G. Godini, An approach to generalizing Banach spaces: Normed almost linear spaces, Proceedings of the 12th Winter School on Abstract Analysis (Srni 1984). Suppl. Rend. Circ. Mat. Palermo II. Ser. 5 (1984), 33-50.
- [4] ______, A framework for best simultaneous approximation: Normed almost linear spaces, J. Approx. Theory 43 (1985), 338-358.
- [5] _____, On Normed Almost Linear Spaces, Math. Ann. 279 (1988), 449-455.
- [6] S. H. Lee, Reflexivity of normed almost linear spaces, Comm. Korean Math. Soc. 10 (1995), 855-866.
- [7] _____, Basis for almost linear spaces, J. Korea Soc. of Math. Edu. (Series B), The Pure and Applied Math. 2 (1995), 43-51.
- [8] _____, Normed almost linear spaces, Ph. D. Thesis (1996).
- [9] O. Mayer, Algebraische und metrische strukturen in der intervallrechnung und einige anwendungen, Computing 5 (1970), 144-162.

DEPARTMENT OF MATHEMATICS, COLLEGE OF NATURAL SCIENCE, CHUNGBUK NATIONAL UNIVERSITY, CHEONGJU 360-763, KOREA