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UNIQUENESS OF BASES FOR
ALMOST LINEAR SPACES

SUNG Mo IM AND SANG HAN LEE

O. Mayer(9] introduced an almost linear space (als), a generalization
of a linear space. The notion of a basis for an als was introduced by G.
Godini[3]. Later, many properties of an als established by a number of
authors. In this paper, we prove that the cardinality of bases for an als
is unique. All spaces involved in this paper are over the real field R. Let
us denote by Ry the set {A € R: A > 0}. We recall some definitions
used in this paper.

An almost linear space (als) is a set X together with two mappings
$: XXX — X andm:RxX — X satisfying the conditions (L;)—(Lg)
given below. For z,y € X and A € R we denote s(z,y) by = + y and
m(A,z) by Az, when these will not lead to misunderstandings. Let
T,y,2€ Xand A p € R. (L) z+(y+2) = (x+y)+2; (L2) z+y = y+xz;
(L3) There exists an element 0 € X such that 40 = z for each z € X;
(La) 1z = z; (Ls) Ma+y) = Az+Ay; (Le) 0z = 0; (L7) Mpz) = (Aw)z;
(Ls) (A + )z = Az + pa for A > 0, > 0. We denote —1z by —z, and
T — y means z + (—y). For an als X we introduce the following two
sets:

Vx ={r X :z—z=0}

Wx ={zeX:z=—-z}

Vx and Wx are almost linear subspaces of X (i.e., closed under addition
and multiplication by scalars) and, in fact, Vx is & linear space. Clearly
an als X is a linear space iff Vx = X iff Wx = {0}. Note that Vx N
Wx={0}and Wx ={z~z:2¢€ X}.
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A norm on an als X is a functional || - || : X — R satisfying the
conditions (V1) —(N3) below. Let z,y,z € X and A € R. (V) ||z—2z]| <
llz =yl +lly = 2li; (V2) [IAz]| = |A] [Jz]|; (V3) [jz]| = 0 iff 2 = 0. An
als X together with || - || : X — R satisfying (N;) — (N3) is called a
normed almost linear space (nals).

A subset B of an als X is called a basis for X if for each z € X \ {0}
there exist unique sets {b1,by,...,bn} C B, {A1, A, ..., A} C R\ {0}

(n depending on z) such that z = 3~ A\;b;, where A; > 0 for b; g Vx.
i=1
Clearly, if B is a basis for X then 0 ¢ B.

In contrast to the case of a linear space, there is an als which has no
basis.

ExaMpPLES 1. (1) Let A; = {(o,0) : € R}, 4 = {(0,8) : B € R.}
be subsets of R? and let X = A; U A;. Define s(z,y) = z + y if both
x,y € Ai, 1 =1,2, and s(z,y) = s(y,z) =yifx € Ay, y € A\ {(0,0)}.
And define m(A, z) = Az if 2 € A1, m(\,y) = |Myify € A;. Let 0 € X
be the zero element (0,0) € R%. Then X is an als. We have Vyx = A4,
and Wx = A,. Also, X has no basis.

(2) Let X = {[a,b] CR:a < b}. Define s(4,B) == {a+b:ac 4, be
B} and m(XA, A) = {da:a € A} for A,B € X, A\ € R. The element
0 € X is {0} C R. Then X is an als. We have Vx = {{a} € X : a € R}
and Wx = {[~a,a] € X :a > 0}. And B = {[-1,1,{1}} is a basis for
X. By = {{1}} is a basis for Vx. Also, Y = {[a,b] € X : a <0, b > 0}
is an almost linear subspace of X. And By = {[—1,0],[0,1]} is a basis
for Y.

(3) Let e1 = (1,0), e2 = (0,1) in R?, and let X = {ae; + fe, :
a € R, g€ R} Define s(z,y) =z +y for z,y € X, and m(\,z) =
(Aa)er + (JA|B)es for © = aey + Bez € X, X € R. The element zero of
X is (0,0) € R%. Then X is an als and {ej,e;} is a basis for X. Let
Y ={ae;+fes e X:0,6€R, 3>0}U{(0,0)}. Then Y is an almost
linear subspace of X. But Y has no basis.

Now, we give some propositions needed in the sequel.

PROPOSITION 2 ([3]). Let X be an als with a basis B. Then,
(a) The relationsz +y =z + z, z,y,z € X imply that y = z.
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(b) For each x € X \ Vy, there exist unique by, bs,....b, € B\
Vx, v € Vx, and A1, Az, ..., Ap > 0 such that z = 37| Aib; +v.

(c) There exists a basis B’ of X with the property that for each
b € B'\ Vx we have —b' € B’ \ Vx. Moreover card(B \ Vx) =
card(B’\ Vx ). We shall call such a basis B’ a symmetric basis.

(d) Forz,y € X, z+y € Vx implies z,y € Vx.

(e} BN Vx is a basis for V.

(f) The relations wy +v1 = we +v2, w; € Wy, v; € Vx, i = 1,2
imply that wy; = wy and v; = v,.

An almost linear subspace Y of an als X with a basis does not have
a basis in general (see, Example 1(3)). But we have the following:

PROPOSITION 3. If an als X has a basis, then Wx has a basis.

Proof. Let B be a symmetric basis for X. Let By = {b—b: b ¢
B\Vx} C Wx. We show that B, is a basis for Wx. Let w € Wy \ {0}.
By Proposition 2(b), w = 37 ; A\ib; +v, where b; € B\ Vx, b; # b; for
1 75 7 A > 0,1 <1< n, v € Vx. Then —w = Z?_—.l )\i(_bi) — v and
sow = (1/2)(w —w) =37 ;(Ai/2)(b; — b;). To show the uniqueness of
this representation, suppose

k

k
w= Z)‘i(bi ~b;) = Zﬂz‘(bi - b;),
i=1

wherebiEB\Vx, b,-—bi;ébj——bjfori;éj,and/\i,m20, ISZSk
Then b; # +b; for i # j, and since for each b € B\ Vx, —b € B\ Vx
we must have \; = u;, 1<i<k. 0O

The converse to Proposition 3 is not true. Indeed, in Example 1(3)
{e2} is a basis for Wy. But Y has no basis. In general, we have the
following result.

PROPOSITION 4. Let X be an als with a basis. If Wx has a basis,
then Wx + Vx has a basis.
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Proof. Let B, be a basis for Wx and B, a basis for the linear space
Vx. By Proposition 2(f), B = B; U By is a basis for Wy + Vx. O

COROLLARY 5. For a split als X = Wx + Vyx with a basis B,
card(B) = card(B;) + card(Bj).

where By and B, are bases for Wx and Vy, respectively.

REMARK. For a linear space X with a basis B, let Y, Z be subspaces
of X with X =Y +Z and Y N Z = {0}. If B; and B, are bases for
Y and Z respectively, then card(B) = card(B;) + card(Bs). But it is
not true when X is an als. Indeed, in Example 1(2) X = Vx +Y and
Vx NY = {0}. However, card(B) < card(B,;) + card(B;).

For an als X, we introduce the following set
Ux :{$€X:(B¢Vx}U{O}.

Then Ux is an almost linear subspace of X by Proposition 2(d). In
Example 1(2), Ux = {[a,b] C R : a < b} has no basis. In general, we
have the following theorem.

THEOREM 6. Let X be a nals. If Ux has a basis, then Ux =X.

Proof. Let B be a basis for Uy and b; € B. For anyv € Vx,v+b €
Ux and —v + by € Ux. Let

v+ b1 = i)\ibi, —U +b1 = zn:llﬂbiv
i=1 i=1

where A;, u; € Ry, b; € B. Then 2b; = S 1 (A +pi)bs. By the unique-
ness of expression by a basis, we have \; +u; =2, \;+pu; =0if i > 1.
However, since each \;, u; € R4, we find A; = pu; = 0 for all ¢ > 1. This
implies

v+ b1 = )\1 bl.
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If/\1 > 1, then bl = )\1b1—’U = (/\1—1+1)b1—v = (Al—l)bl —’U+b1. Since
(A1 —1)b; —v € Ux and Uy has a basis, we can use cancellation law. We
have (A1 — 1)by —v = 0, whence (A\; — 1)b; = v € Vx, a contradiction.
If Ay < 1, then v4+by =v+ (]. - A1 +/\1)b1 =v-+ (1 -Al)bl + A1by. We
have 0 = v+ (1 — A1)by, whence (1 — A1)by = —v € Vi, a contradiction.
Thus A\ =1 and v+b; = b;. Since X is a nals, v = 0(cf. [8; Proposition
1.2]). Therefore Vx = {0}, and the proof is completed. [

REMARK. The statement of Theorem 6 is false if X is an als. Indeed,
in Example 1(1) Ux = Wx and Ux # X, but B = {e2} is a basis for
Ux.

THEOREM 7. Let B and B’ be bases for an als X. Then, up to
positive scalar times and ignoring the Vx part, the two sets are identical.
More precisely, there is a bijective mapping ¢ on B\ Vx onto B’ \ Vx
such that, for each b € B,

¢(b) = v(b) + A(b)b,

where v(b) € Vx, A(b) > 0.

Proof. For simplicity, let b = b; € B\ Vx. Let by = u+ 325 \.¢/
withu € Vx, A; > 0 and b € B'\ Vx; and let b} = ui+zj ti;b;, where
u; € Vx, b; € B\ Vx and p;; > 0 (we need to allow some pi; = 0).
Then

k
bi=u+Y Ab
i=1
i J
=u-+ Z/\zul + Z (Z /\iuljj) bj.
1 7 1
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By the uniqueness of expression by a basis, we have
u+Z)\iui=0, Z/\i,uil:l, Z’\i,ufij:()ifj>1-
i i i

However, since each A\; > 0 and #i; 2 0, we find p;; =0 for all i > 1
and all j > 1. This implies ¥, = u; +Zj Mizh; = w; +pa by, and pyy >0
since b; ¢ Vx. We have

1
b1 = — (—-’U.z' —f—b:) .
Hi1
Since {b{,b3,---,b}} is in a basis B’, i can only be 1. Thus, b =
u1 + p1:b1. Hence we can define

¢:B\Vx - B'\Vx

by ¢(b) = v(b) + A(b)b, where v(b) € Vx, A(b) > 0. Similarly, we can
define
¢': B'\Vx — B\ Vyx

by ¢'(b') = w(b') + MY, where v(¥) € Vy, Ad') > 0. For each
be B\ Vx,
(¢ 0 9)(b) = ¢'(¢(D))
= v(¢(b)) + A(¢(b)) g (b)
= v(8(b)) + A(#(b)) (v(b) + A(b)b)
= (v(9(0)) + Me(b))v(b)) + (A($(b)) A(b))b.

Since {(¢’ o ¢)(b), b} is in a basis B\ Vx, (¢ o ®)(b) = b, whence
¢ odp = I B\vy)- Similarly, gog’ = I p\vy)- Therefore ¢ is bijective. [

COROLLARY 8. Let X be an als. If Ux has a basis, then the basis
for Ux is unique up to positive scalar multiple for each element.

Now, we shall give our main theorem.
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THEOREM 9. Any two bases B and B’ of an als X have the same
cardinal number.

Proof. By Proposition 2(e), BN Vx and B’ N Vx are bases for V.
Since any two vector bases of a linear space have the same cardinal
number,

card(B NVx) = card(B' N Vx).

However, by Theorem 7,
card(B \ Vx) = card(B’ \ V).

Therefore card(B) = card(B’). O
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