A CHARACTERIZATION OF SOME REAL HYPERSURFACES IN A COMPLEX HYPERBOLIC SPACE

Hyang Sook Kim

0. Introduction

We denote by $M_{n}(c)$ a complete and simply connected complex n-dimensional Kählerian manifold of constant holomorphic sectional curvature $4 c$, which is called a complex space form. Such an $M_{n}(c)$ is bi-holomorphically isometric to a complex projective space $P_{n} \mathbb{C}$, a complex Euclidean space \mathbb{C}^{n} or a complex hyperbohc space $H_{n} \mathbb{C}$, according as $c>0, c=0$ or $c<0$.

In this paper, we consider a real hypersurface M in $M_{n}(c)$. Typical examples of M in $P_{n} \mathbb{C}$ are the six model spaces of type A_{1}, A_{2}, B, C, D and E, and the ones of M in $H_{n} \mathbb{C}$ are the four model spaces of type A_{0}, A_{1}, A_{2} and B (cf. Theorem A in $\S 1$), which are all given as orbits under certain Lie subgroups of the group consisting of all isometries of $P_{n} \mathbb{C}$ or $H_{n} \mathbb{C}$. Denote by (ϕ, ξ, η, g) the almost contact metric structure of M induced from the almost complex structure of $M_{n}(c)$, and by A the shape operator of M. The structure vector ξ is said to be princzpal if $A \xi=\alpha \xi$, where $\alpha=\eta(A \xi)$. Many differential geometers have studied M from various points of view. Berndt [1] and Takagi [14] investigated the homogeneity of M. According to Takagi's classification theorem and Berndt's one, the principal curvatures and their multiplicities of a homogeneous real hypersurface in $M_{n}(c)$ are given. Moreover, it is very interesting to give a characterization of homogeneous real hypersurfaces of $M_{n}(c)$. Let \mathcal{L}_{ξ} be the Lie derivative in the direction of ξ. Then Okumura [13] and Montiel-Romero [12] proved the fact in $P_{n} \mathbb{C}$ and $H_{n} \mathbb{C}$, respectively that M is locally congruent to one of homogeneous ones of type A if and only if ξ is an infinitesimal isometry, that is, $\mathcal{L}_{\xi} g=0$, where type A means type A_{1} or A_{2} in $P_{n} \mathbb{C}$ and type A_{0}, A_{1}

This work was supported by Grant from Inje University, 1996.
or A_{2} in $H_{n} \mathbb{C}$. Motivated by these results, Maeda-Udagawa [11] studied the condition " $\mathcal{L}_{\xi} \phi=0$ " and Ki-Kim-Lee [3] investigated the condition " $\mathcal{L}_{\xi} A=0$ ". Recently, Kimura and Maeda [10] completly classified M in $P_{n} \mathbb{C}$ satisfying $\mathcal{L}_{\xi} S=0$, where S denotes the Ricci tensor of M.

The purpose of the present paper is to investigate M of $H_{n} \mathbb{C}^{\prime}$ which satisfies $\mathcal{L}_{\xi} S=0$ under the condition that $A \xi$ is principal.

1. Preliminaries

We begin with recalling the basic properties of real hypersurfaces of a complex space form. Let N be a unit normal vector field on a neighborhood of a point p in M and J the almost complex structure of $M_{n}(c)$. For a local vector field X on a neighborhood of p, the images of X and N under the transformation J can be represented as

$$
J X=\phi X+\eta(X) N, \quad J N=-\xi
$$

where ϕ defines a skew-symmetric transformation on the tangent bundle $T M$ of M, while η and ξ denote a 1 -form and a vector field on the neighborhood of p, respectively. Moreover, it is seen that $g(\xi, X)=\eta(X)$, where g denotes the induced Riemannian metric on M. By the properties of the almost complex structure J, the set (ϕ, ξ, η, g) of tensors satisfies

$$
\begin{equation*}
\phi^{2}=-I+\eta \otimes \xi, \quad \phi \xi=0, \quad \eta(\phi X)=0, \quad \eta(\xi)=1, \tag{1.1}
\end{equation*}
$$

where I denotes the identity transformation. Accordingly, this set (ϕ, ξ, η, g) defines the almost contact metric structure on M. Furthermore, the covariant derivatives of the structure tensors are given by

$$
\begin{align*}
\left(\nabla_{X} \phi\right) Y & =\eta(Y) A X-g(A X, Y) \xi \tag{1.2}\\
\nabla_{X} \xi & =\phi A X \tag{1.3}
\end{align*}
$$

where ∇ is the Riemannian connection of g. Since the ambient space is of constant holomorphic sectional curvature $4 c$, the equations of Gauss and Codazzi are respectively given as follows:

$$
\begin{align*}
R(X, Y) Z= & c\{g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X \\
& -g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z\} \tag{1.4}\\
& +g(A Y, Z) A X-g(A X, Z) A Y
\end{align*}
$$

$$
\begin{align*}
& \left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X \tag{1.5}\\
= & c\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\}
\end{align*}
$$

where R denotes the Riemannian curvature tensor of M. The Ricci tensor S^{\prime} of M is the tensor of type $(0,2)$ given by $S^{\prime}(X, Y)=\operatorname{tr}\{Z \rightarrow$ $R(Z, X) Y$. But it may be also regarded as a tensor of type $(1,1)$ and denoted by $S: T M \rightarrow T M$; it satisfies $S^{\prime}(X, Y)=g(S X, Y)$. From the Gauss equation and (1.1), the Ricci tensor S is given by

$$
\begin{equation*}
S=c\{(2 n+1) I-3 \eta \otimes \xi\}+h A-A^{2} \tag{1.6}
\end{equation*}
$$

where h is the trace of A. Moreover, using (1.3), we get

$$
\begin{align*}
\left(\nabla_{X} S\right) Y= & -3 c\{g(\phi A X, Y) \xi+\eta(Y) \phi A X\}+(X h) A Y \\
& +(X h) A Y+(h I-A)\left(\nabla_{X} A\right) \mathrm{I}-\left(\nabla_{X} A\right) A Y \tag{1.7}
\end{align*}
$$

Now we quote the following in order to prove our results.
Theorem A [1]. Let M be a real hypersurface of $H_{n} \mathbb{C}$. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following:
A_{0}. a horosphere in $H_{n} \mathbb{C}$,
A_{1}. a geodesic hypersphere $H_{0} \mathbb{C}$ or a tube over a hyperplane $H_{n-1} \mathbb{C}$, A $_{2}$. a tube over a totally geodesic $H_{k} \mathbb{C}(1 \leq k \leq n-2)$,
B. a tube over a totally real hyperbolic space $H_{n} \mathbb{R}$.

THEOREM B [4]. Let M be a real hypersurface of $H_{n} \mathbb{C}(n \geq 3)$. If ξ is principal and M satisfies $\mathcal{L}_{\xi} S=0$, then M is locally congruent to type A.

2. Real hypersurfaces in $M_{n}(c)$ satisfying $\mathcal{L}_{\xi} S=0$

We denote by $M_{n}(c)$ a complex space form with the metric of constant holomorphic sectional curvature $4 c$ and M a real hypersurface in $M_{n}(c), c \neq 0$. In this section, we suppose that the Ricci tensor S
satisfies the condition $\mathcal{L}_{\xi} S=0$. The following discussion in the case where $c>0$ is indebted to Kimura and maeda [10]:

From (1.3), for any $X \in T M$ we have

$$
\begin{aligned}
\left(\mathcal{L}_{\xi} S\right) X & =[\xi, S X]-S[\xi, X] \\
& =\left(\nabla_{\xi} S\right) X-\nabla_{S X} \xi+S \nabla_{X} \xi \\
& =\left(\nabla_{\xi} S\right) X-\phi A S X+S \phi A X
\end{aligned}
$$

Then we see that " $\mathcal{L}_{\xi} S=0$ " is equivalent to

$$
\begin{equation*}
\nabla_{\xi} S=\phi A S-S \phi A \tag{2.1}
\end{equation*}
$$

Since $g\left(\left(\nabla_{S}\right) X, Y\right)=g\left(\left(\nabla_{S}\right) Y, X\right)$ for any $X, Y \in T M$, the equation (2.1) shows

$$
\begin{equation*}
(\phi A-A \phi) S=S(\phi A-A \phi) \tag{2.2}
\end{equation*}
$$

From (1.6) it follows that

$$
\begin{equation*}
\phi S-S \phi=h(\phi A-A \phi)-\left(\phi A^{2}-A^{2} \phi\right) \tag{2.3}
\end{equation*}
$$

Here we hope to calculate $\|\phi S-S \phi\|^{2}$, which is equivalent to $\operatorname{tr}(\phi S-$ $S \phi)^{2}$ because $\phi S-S \phi$ is symmetric. From (2.3), we get

$$
\begin{align*}
\operatorname{tr}(\phi S-S \phi)^{2}= & h \operatorname{tr}(\phi A-A \phi)(\phi S-S \phi) \\
& -\operatorname{tr}\left(\phi A^{2}-A^{2} \phi\right)(\phi S-S \phi) \tag{2.4}
\end{align*}
$$

In general, we get
(2.5) $\quad \operatorname{tr}(\phi A-A \phi)(\phi S-S \phi)=2 \operatorname{tr} \phi A \phi S-\operatorname{tr} A \phi^{2} S-\operatorname{tr} \phi A S \phi$.

Taking the trace of (2.2), we find

$$
\begin{equation*}
\operatorname{tr} \phi^{2} A S-2 \operatorname{tr} \phi S \phi A+\operatorname{tr} \phi^{2} S A=0 \tag{2.6}
\end{equation*}
$$

Combining (2.5) with (2.6), we obtain

$$
\begin{equation*}
\operatorname{tr}(\phi A-A \phi)(\phi S-S \phi)=0 \tag{2.7}
\end{equation*}
$$

On the other hand, we find
(2.8) $\operatorname{tr}\left(\phi A^{2}-A^{2} \phi\right)(\phi S-S \phi)=2 \operatorname{tr} \phi A^{2} \phi S-\operatorname{tr} A^{2} \phi^{2} S-\operatorname{tr} \phi A^{2} S \phi$.

From (2.2) it follows that

$$
\phi A\{(\phi A-A \phi) S-S(\phi A-A \phi)\}=0
$$

which implies

$$
\begin{equation*}
\operatorname{tr} \phi A S A \phi=\operatorname{tr} \phi A^{2} \phi S . \tag{2.9}
\end{equation*}
$$

Then combining (2.8) with (2.9) we have
(2.10) $\operatorname{tr}\left(\phi A^{2}-A^{2} \phi\right)(\phi S-S \phi)=2 \operatorname{tr} \phi^{2} A S A-\operatorname{tr} \phi^{2} S A^{2}-\operatorname{tr} \phi^{2} A^{2} S$.

Thus substituting (2.7) and (2.10) into (2.4) and using (1.1) and (1.6), we can see that

$$
\begin{equation*}
\operatorname{tr}(\phi S-S \phi)^{2}=-\frac{3}{2} c\left(\beta-\alpha^{2}\right) \tag{2.11}
\end{equation*}
$$

where we have put $\beta=\eta\left(A^{2} \xi\right)$ and $\alpha=\eta(A \xi)$. Taking account of (1.1), we find

$$
\begin{equation*}
\|\phi A \xi\|^{2}=\beta-\alpha^{2} \tag{2.12}
\end{equation*}
$$

Hence from (2.11) and (2.12), we have

$$
\operatorname{tr}(\phi S-S \phi)^{2}=-\frac{3}{2} c\|\phi A \xi\|^{2}
$$

or

$$
\|\phi S-S \phi\|^{2}+\frac{3}{2} c\|\phi A \xi\|^{2}=0 .
$$

Consequently, the condition " $\mathcal{L}_{\xi} S=0$ " implies the fact that $\phi S=S \phi$ and ξ is principal in the case where $c>0$ and that $\phi S=S \phi$ if and only if ξ is principal in the case where $c<0$. Here we note that Kimura and Maeda [10] proved a local classification theorem for real hypersurfaces in $P_{n} \mathbb{C}$ which satisfy $\mathcal{L}_{\xi} S=0$. Thus because of Theorem B , it is seems to be interested to consider real hypersurfaces in $H_{n} \mathbb{C}$ satisfying $\mathcal{L}_{\xi} S=0$ under the weaker condition than one that ξ is principal.

3. Real hypersurfaces in $H_{n} \mathbb{C}$ satisfying $\mathcal{L}_{\xi} S=0$

Let M be a real hypersurface in a complex hyperbolic space $H_{n} \mathbb{C}$ endowed with the Bergmann metric of constant holomorphic sectional curvature -4 . In this section, we assume that M satisfies $\mathcal{L}_{\xi} S=0$ and $A \xi$ is principal. The second assumption means

$$
\begin{equation*}
A^{2} \xi=\lambda A \xi \tag{3.1}
\end{equation*}
$$

where $\lambda=\eta\left(A^{3} \xi\right)$. For simplicity we put $U=\nabla_{\xi} \xi$. Then we have $U=\phi A \xi$, which together with (1.1) implies

$$
\begin{equation*}
\phi U=-A \xi+\alpha \xi \tag{3.2}
\end{equation*}
$$

and so $g(\phi U, \xi)=0$. Thus we define ϕU by $\phi U=-\mu W$, where W is a unit vector field orthogonal to ξ and μ is a smooth function on M. Namely, we have

$$
\begin{equation*}
A \xi=\alpha \xi+\mu W \tag{3.3}
\end{equation*}
$$

Here we note that this and $U=\mu \phi W$ give $g(U, W)=0$. Moreover, it follows from (1.6) and (3.1) that

$$
\begin{align*}
S \xi & =-2(n-1) \xi+(h-\lambda) A \xi \tag{3.4}\\
S U & =-(2 n+1) U+h A U-A^{2} U \tag{3.5}
\end{align*}
$$

From (3.1) and (3.3) we find

$$
\begin{equation*}
A W=\gamma A \xi \tag{3.6}
\end{equation*}
$$

where $\gamma \mu=\lambda-\alpha$. Thus (1.6) combined with (3.1) and (3.6) gives us

$$
\begin{equation*}
S W=-(2 n+1) W+\gamma(h-\lambda) A \xi \tag{3.7}
\end{equation*}
$$

From (2.2), we find

$$
(\phi A-A \phi) S \xi=S(\phi A-A \phi) \xi
$$

which, together with $(1.1),(3.4),(3.5)$ and the definition of U, yields

$$
\begin{equation*}
A^{2} U=(2 h-\lambda) A U+\left(\lambda^{2}-\lambda h-3\right) U . \tag{3.8}
\end{equation*}
$$

Also, from (2.2) we get

$$
(\phi A-A \phi) S W=S(\phi A-A \phi) W
$$

which, together with $(1.1),(1.6),(3.5) \sim(3.8)$ and the definition of W, leads to

$$
\begin{equation*}
\left\{2(\lambda-h)^{2}-3\right\} A U=\left\{\lambda(\lambda-h)^{2}+3(h-2 \lambda+\alpha)\right\} U . \tag{3.9}
\end{equation*}
$$

On the other hand, differentiating (3.2) covariantly in the direction of X and making use of (1.1), (1.2) and (1.3), we obtain

$$
g(A X, U) \xi-\phi\left(\nabla_{X} A\right) \xi+A \phi A X-d \alpha(X) \xi-\alpha \phi A X
$$

Taking the inner product of this and ξ and using (1.1) and (1.3), we have

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) \xi, \xi\right)=2 g(A U, X)+d \alpha(X) \tag{3.10}
\end{equation*}
$$

Moreover, differentiating (3.1) covariantly in the direction of X, we get

$$
\begin{align*}
& \left(\nabla_{X} A\right) A \xi+A\left(\nabla_{X} A\right) \xi+A^{2} \phi A X \\
= & d \lambda(X) A \xi+\lambda\left(\nabla_{X} A\right) \xi+\lambda A \phi A X . \tag{3.11}
\end{align*}
$$

If we take the inner product of this and ξ and make use of (3.1), (3.10) and the fact that $g\left(\left(\nabla_{X} A\right) \xi, Y\right)=g\left(\left(\nabla_{X} A\right) Y, \xi\right)$ for any $X, Y \in T M$, then we find

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) \xi, A \xi\right)=\frac{1}{2} d(\lambda \alpha)(X)+\lambda g(A U, X) \tag{3.12}
\end{equation*}
$$

From (3.11), replacing X by ξ and taking the inner product of this result and ξ, we have

$$
\begin{align*}
& \frac{1}{2} d(\lambda \alpha)(X)+g(U, X)+3 g\left(A^{2} U, X\right)+d \alpha(A X) \tag{3.13}\\
= & d \lambda(\xi) g(A \xi, X)+2 \lambda g(A U, X)+\lambda d \alpha(X)
\end{align*}
$$

where we have used (1.5), (3.10) and (3.12).
Let M_{0} be the set of consisting of points x in M such that $(\lambda-h)(x)=0$. On the subset M_{0}, from (3.9) it is seen that

$$
\begin{equation*}
A U=(\lambda-\alpha) U \text { on } M_{0} \tag{3.14}
\end{equation*}
$$

Then, by using (3.14) the equation (3.8) turns out to be $\{\alpha(\lambda-\alpha)-$ $3\} U=0$ on M_{0}.

Lemma 3.1. Let M be a real hypersurface of $H_{n} \mathbb{C}$. Assume that it satisfies $\mathcal{L}_{\xi} S=0$ and $A \xi$ is principal. If $U \neq 0$, then $\operatorname{Int}\left(M_{0}\right)=\emptyset$, where Int $\left(M_{0}\right)$ denotes the interior of $M_{0}=\{x \in M \mid(\lambda-h)(x)=0\}$.

Proof. We assume that the interior of M_{0} is not empty. Since we have supposed that $U \neq 0$, from the above equation it follows that $\alpha(\lambda-\alpha)=3$. By means of (3.1), it is clear that $\beta=\lambda \alpha$, which together with (2.12) gives us $g(U, U)=3$. Thus, using (3.8) and (3.14), the equation (3.13) is reformed as

$$
\alpha d \lambda(\xi) g(A \xi, X)=(3 \lambda-8 \alpha) g(U, X)-3 d \alpha(X)+\alpha d \alpha(\dot{A} X) .
$$

Replacing X by U into this equation and making use of (3.14), we obtain $3(3 \lambda-8 \alpha)=0$, which yields $3 \lambda=8 \alpha$. Thus we can see that $\alpha=3 / \sqrt{5}, \lambda=8 / \sqrt{5}$ and $\mu=\sqrt{3}$.

On the other hand, since $g((\phi S-S \phi) U, W)=-g(S U, \phi W)-g(S W$, $\phi U)$, using (3.5), (3.7) and (3.8), we get $g((\phi S-S \phi) U, W)=3 g(\phi U$, $W)$, which together with (3.2) implies $g((\phi S-S \phi) U, W)=-3 \sqrt{3}$. Then it is clear that $\|\phi S-S \phi+\sqrt{3}(W \otimes U+U \otimes W)\|^{2}=0$, where we have used (2.11) and (2.12). Thus we can see that $\phi S-S \phi=-\sqrt{3}(W)$ $U+U \otimes W)$. Since $\phi U=-\sqrt{3} W$, we obtain $\phi S-S \phi=\phi U \otimes U+U \otimes \phi U$. Combining this with (2.3), we have

$$
\begin{equation*}
\lambda \phi A-\phi A^{2}-\lambda A \phi+A^{2} \phi=\phi U \otimes U+U \otimes \phi U \tag{3.15}
\end{equation*}
$$

which, together with (3.1), (3.2) and (3.14), shows that

$$
\begin{align*}
& \lambda \phi A^{2}-\phi A^{3}-\lambda A \phi A+A^{2} \phi A \tag{3.16}\\
= & (\alpha-\lambda)\{A \xi \otimes U+U \otimes A \xi\}+3 U \otimes \xi
\end{align*}
$$

Substituting X by ξ into (1.7), we get

$$
\begin{aligned}
\left(\nabla_{\xi} S\right) X= & 3 g(U, X) \xi+3 \eta(X) U+\lambda\left(\nabla_{\xi} A\right) X \\
& -A\left(\nabla_{\xi} A\right) X-\left(\nabla_{\xi} A\right) A X,
\end{aligned}
$$

which, together with (1.6) and (2.1), leads to

$$
\begin{align*}
& \lambda \phi A^{2} X-\phi A^{3} X-\lambda A \phi A X+A^{2} \phi A X \tag{3.17}\\
= & 3 g(U, X) \xi+\lambda\left(\nabla_{\xi} A\right) X-A\left(\nabla_{\xi} A\right) X-\left(\nabla_{\xi} A\right) A X .
\end{align*}
$$

From (3.16) and (3.17), it is seen that

$$
\begin{align*}
& (\alpha-\lambda)\{A \xi \otimes U+U \otimes A \xi\}(X)+3 U \otimes \xi(X) \tag{3.18}\\
= & 3 g(U, X) \xi+\lambda\left(\nabla_{\xi} A\right) X-A\left(\nabla_{\xi} A\right) X-\left(\nabla_{\xi} A\right) A X .
\end{align*}
$$

By using the Codazzi equation (1.5), the equation (3.17) is reformed as

$$
\begin{aligned}
& \lambda \phi A^{2} X-\phi A^{3} X-\lambda A \phi A X+A^{2} \phi A X \\
= & 3 g(U, X) \xi+\lambda\left(\nabla_{X} A\right) \xi-\lambda \phi X-A\left(\nabla_{X} A\right) \xi+A \phi X-\left(\nabla_{\xi} A\right) A X,
\end{aligned}
$$

which together with (3.11) yields

$$
\begin{aligned}
& \left(\nabla_{X} A\right) A \xi-\left(\nabla_{\xi} A\right) A X \\
& =\lambda \phi A^{2} X-\phi A^{3} X-3 g(X, U) \xi+\lambda \phi X-A \phi X .
\end{aligned}
$$

Transforming this by ϕ and taking account of (1.1), we get

$$
\begin{align*}
& \phi\left\{\left(\nabla_{X} A\right) A \xi-\left(\nabla_{\xi} A\right) A X\right\} \\
= & A^{3} X-\lambda A^{2} X-\lambda X+\lambda \eta(X) \xi-\phi A \phi X . \tag{3.19}
\end{align*}
$$

Differentiating (3.15) covariantly along M_{0} and making use of (3.1), we obtain

$$
\begin{aligned}
& \left(\nabla_{X} \phi\right)\left(\lambda A-A^{2}\right) Y+\phi\left(\lambda\left(\nabla_{X} A\right) Y-\left(\nabla_{X} A\right) A Y-A\left(\nabla_{X} A\right) Y\right) \\
& -\left(\lambda\left(\nabla_{X} A\right)-\left(\nabla_{X} A\right) A-A\left(\nabla_{X} A\right)\right) \phi Y-\left(\lambda A^{-} A^{2}\right)\left(\nabla_{X} \phi\right) Y \\
= & \left\{\phi \nabla_{X} U \otimes U+\phi U \otimes \nabla_{X} U+\nabla_{X} U \otimes \phi U+U \otimes \phi \nabla_{X} U\right. \\
+ & (\lambda-\alpha) g(U, X)(\xi \otimes U+U \otimes \xi)\}(Y) .
\end{aligned}
$$

Taking the skew symmetric part for X and Y of this and then replacing X by ξ into the obtained result, then we get

$$
\begin{aligned}
& \lambda\{X-\eta(X) \xi\}-\phi\left(\nabla_{\xi} A\right) A X+\phi\left(\nabla_{X} A\right) A \xi+\phi A \phi X \\
- & \lambda\left(\nabla_{\xi} A\right) \phi X+\left(\nabla_{\xi} A\right) A \phi X+A\left(\nabla_{\xi} A\right) \phi X+\lambda A^{2} X-A^{3} X \\
= & g(U, X) \phi \nabla_{\xi} U+g\left(\nabla_{\xi} U, X\right) \phi U-g\left(\nabla_{X} U, \xi\right) \phi U \\
+ & g(\phi U, X) \nabla_{\xi} U+g\left(\phi \nabla_{\xi} U, X\right) U-(\lambda-\alpha) g(U, X) U,
\end{aligned}
$$

where we have used (1.1), (1.2), (1.5) and (3.1). Combining this and (3.19) and taking account of the fact that $g\left(\nabla_{X} U, \xi\right)=-g\left(\nabla_{X} \xi, U\right)=$ $(\alpha-\lambda) g(A \xi, X)$, we get

$$
\begin{align*}
& 3 g(U, \phi X) \xi+(\lambda-\alpha) g(U, \phi X) A \xi \\
= & g(U, X) \phi \nabla_{\xi} U+g\left(\nabla_{\xi} U, X\right) \phi U+(\lambda-\alpha) g(A \xi, X) \phi U \tag{3.20}\\
+ & g(\phi U, X) \nabla_{\xi} U+g\left(\phi \nabla_{\xi} U, X\right) U .
\end{align*}
$$

On the other hand, differentiating U covariantly in the direction of X and making use of (1.2), (1.3) and (3.1), we get

$$
\nabla_{X} U=\alpha A X-\lambda g(X, A \xi) \xi+\phi\left(\nabla_{X} A\right) \xi+\phi A \phi A X
$$

which implies that

$$
\nabla_{\xi} U=\alpha A \xi-\lambda \alpha \xi+\phi\left(\nabla_{\xi} A\right) \xi+\phi A U
$$

Then, by means of (3.14), we have

$$
\phi \nabla_{\xi} U=(2 \alpha-\lambda) U-\left(\nabla_{\xi} A\right) \xi
$$

Substituting the last two equations into (3.20) and taking the inner product of this result and U, we can see that

$$
(6 \alpha-4 \lambda) g(U, X)=0,
$$

where we have used (3.14). Thus, we obtain $3(6 \alpha-4 \lambda)=0$. Hence $3 \alpha=2 \lambda$. Since $3 \lambda=8 \alpha$ on the subset M_{0}, we get $\alpha=0$. This contradicts the fact that $\alpha=3 / \sqrt{5}$. Consequently, we conclude that $\operatorname{Int}\left(M_{0}\right)=0$.

The following is immediate from Lemma 3.1.
Lemma 3.2. Let M be a real hypersurface of $H_{n} \mathbb{C}$. If it satisfics $\mathcal{L}_{\xi} S=0$ and $A \xi$ is principal such that $\eta\left(A^{3} \xi\right)=\operatorname{tr} A$, then ξ is principal.

Remark 1. In general, " ξ is principal" implies " $A \xi$ is princıpal". But the converse is not true.

Remark 2. The structure vector ξ is principal with respect to S if the Ricci tensor S satisfies $S \xi=\sigma \xi$ for some function σ on M. Under the same assumption as Lemma 3.2, we have ξ is principal with respect to S. In fact, since $\lambda=\eta\left(A^{3} \xi\right)=\operatorname{tr} A=h$, taking account of (3.4) we have $S \xi=-2(n-1) \xi$.

REmark 3. A ruled real hypersurface does not satisfy the condition that $A \xi$ is principal. In fact, let M be a ruled real hypersurface in a complex space form $M_{n}(c)$. Then M satisfies

$$
\begin{aligned}
& A \xi=\alpha \xi+\beta V(\beta \neq 0) \\
& A V=\beta \xi \\
& A X=0
\end{aligned}
$$

for any vector X orthogonal to ξ and V, where V is a unit orthogonal to ξ, and α and β are smooth functions on M. Assume that M satisfics the condition that $A \xi$ is principal, that is, $A^{2} \xi=\lambda A \xi$. Then using the above properties of M, we get $A^{2} \xi=A(\alpha \xi+\beta V)=\left(\alpha^{2}+\beta^{2}\right) \xi+$ $\alpha \beta V$ and $A^{2} \xi=\lambda(A \xi)=\alpha \lambda \xi+\beta \lambda V$. Thus comparing to these two equations, we have $\alpha=\lambda$ and $\beta=0$. This contradicts the fact that $\beta \neq 0$.

From Lemma 3.2 and Theorem B we have the following.
Theorem 3.3. Let M be a real hypersurface of $H_{n} \mathbb{C}(n \geq 3)$. If $A \xi$ is principal such that $\eta\left(A^{3} \xi\right)=\operatorname{tr} A$ and M satisfies $\mathcal{L}_{\xi} S=0$, then M is locally congruent to type A.

For a real hypersurface of $H_{n} \mathbb{C}$ satisfying the condition " $\mathcal{L}_{\xi} S=0$ ", we see that $\phi S=S \phi$ if and only if ξ is principal. Thus we get the following.

Theorem 3.4. Let M be a real hypersurface of $H_{n} \mathbb{C}(n \geq 3)$. If M satisfies $\mathcal{L}_{\xi} S=0$ and $\phi S=S \phi$, then M is locally congruent to type A.

References

1. J. Berndt, Real hypersurfaces wath constant principal curvatures an complex hyperbohc space, J. reine angew Math 395 (1989), 132-141.
2. T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projetive space, Trans. Amer. Math. Soc 269 (1982), 481-499.
3. U-H. Ki, S J. Kim and S. B. Lee, Some characterzzatıons of a real hypersurface of type A, Kyungpook Math. J. 31 (1991), 73-82.
4. U-H. Ki, N K. Kim and S. B. Lee, On certain real hypersurfaces of a complex space form, J. Korean Math. Soc 29 (1992), 63-77.
5. U-H. Kı and Y. J. Suh, On real hypersurfaces of complex space form, Math. J. Okayama Univ. 32 (1990), 207-221
6. U-H. Kı, H. S. Kim and H Nakagawa, A characterization of a real hypersurface of type B, Tsukuba J. Math. 14 (1990), 9-26.
7. H. S. Kim and R. Takagi, The type number of real hypersurfaces in $P_{n}(\mathbb{C})$, Tsukuba J Math. 20 (1996), 349-356
8. M. Kimura, Real hypersurfaces and complex submansfolds in complex projective space, Trans. Amer. Math. Soc 296 (1986), 137-149.
9. M. Kımura and S. Maeda, On real hypersurfaces of a complex projective space II, Tsukuba J. Math 15 (1991), 547-561.
10. M. Kimura and S. Maeda, Lie derivatıves on real hypersurfaces in a complex projective space, Czechoslovak Math J 45 (1995), 1229-1235.
11. S. Maeda and S. Udagawa, Real hypersurfaces of a complex projectzve space in terms of holomorphic distrıbutıon, Tsukuba J. Math. 14 (1990), 39-52.
12. S. Montiel and A. Romere, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedıcata 20 (1986), 245-261
13. M. Okumura, On some real hypersurfaces of a complex projectave space, Trans. Amer Math Soc. 212 (1975), 355-364.
14. R Takag1, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506
15. , Real hypersurfaces on a complex projectıve space with constant prancipal curvatures I, I, J. Math. Soc Japan 27 (1975), 43-53, 507-516.

Department of Mathematics

Inje University

Kimhae 621-749, Korea

