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A CHARACTERIZATION OF SOME
REAL HYPERSURFACES IN A
COMPLEX HYPERBOLIC SPACE

HyaNG Sook Kim

0. Introduction

We denote by M,(¢) a complete and simply connected complex
n-dimensional Kahlerian manifold of constant holomorphic sectional
curvature 4c, which is called a complez space form. Such an M,(c)
is bi-holomorphically isometric to a complex projective space P,C, a
complex Euclidean space C* or a complex hyperbolic space H,,C,
according as ¢ >0, c =0 or ¢ < 0.

In this paper, we consider a real hypersurface M in My(c). Typical
examples of M in P,C are the six model spaces of type 4, Az, B,C, D
and E , and the ones of M in H,C are the four model spaces of type
Ag, A1, Az and B (cf. Theorem A in §1), which are all given as orbits
under certain Lie subgroups of the group consisting of all isometries of
P,C or H,,C. Denote by (¢,£,n,g) the almost contact metric structure
of M induced from the almost complex structure of Myp{c), and by 4
the shape operator of M. The structure vector £ is said to be principal
if A = af, where @ = n(A€). Many differential geometers have studied
M from various points of view. Berndt [1] and Takagi [14] investigated
the homogeneity of M. According to Takagi’s classification theorem
and Berndt’s one, the principal curvatures and their multiplicities of a
homogeneous real hypersurface in M,,(c) are given. Moreover, it is very
interesting to give a characterization of homogeneous real hypersurfaces
of My(c). Let L; be the Lie derivative in the direction of £. Then
Okumura {13] and Montiel-Romero [12] proved the fact in P,C and
H,C, respectively that M is locally congruent to one of homogeneous
ones of type A if and only if £ is an infinitesimal isometry, that is,
Leg = 0, where type A means type A, or Az in P,C and type Ag, A4
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or Az in H,,C. Motivated by these results, Maeda-Udagawa [11] studied
the condition “L¢¢ = 0” and Ki-Kim-Lee {3] investigated the condition
“Le¢A = 0”. Recently, Kimura and Maeda [10] completly classified Af
in P,C satisfying £S5 = 0, where S denotes the Ricci tensor of M.

The purpose of the present paper is to investigate M of H,C' - hich
satisfies £¢5 = 0 under the condition that A£ is principal.

1. Preliminaries

We begin with recalling the basic properties of real hypersurfaces
of a complex space form. Let N be a unit normal vector field on a
neighborhood of a point p in M and J the almost complex structure of
My(c). For a local vector field X on a neighborhood of p, the images
of X and N under the transformation J can be represented as

JX = ¢X +n9(X)N , JN = —¢,

where ¢ defines a skew-symmetric transformation on the tangent bun-
dle TM of M, while n and £ denote a 1-form and a vector field
on the neighborhood of p , respectively. Moreover, it is scen that
9(€,X) = n(X), where g denotes the induced Riemannian metric on Af.
By the properties of the almost complex structure J, the set (4,¢,7,9)
of tensors satisfies

(11]) ¢ =-I+n®E ¢£=0, n(¢X)=0, n({)=1,

where I denotes the identity transformation. Accordingly, this set (¢,
£, n, g) defines the almost contact metric structure on M. Furthermore,
the covariant derivatives of the structure tensors are given by

(1.2) (Vx8)Y =n(Y)AX — g(AX,Y)E,

(1.3) Vx€ = ¢AX,

where V is the Riemannian connection of g. Since the ambient space is

of constant holomorphic sectional curvature 4¢, the equations of Gauss
and Codazzi are respectively given as follows :

R(X,Y)Z = c{g(Y,2)X — g(X, Z)Y + g(¢Y, Z)pX

(14) — g(6X, Z)¢Y — 2g9(6X,Y )2}
+ g(AY, Z2)AX — g(AX,Z2)AY
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(VxAY — (Vy4)X

(1.5) = c{n(X)Y — n(Y)oX — 2¢(¢ X, Y)ED,

where R denotes the Riemanmnian curvature tensor of M. The Rica
tensor S’ of M is the tensor of type (0,2) given by S'(X,Y) =tr{Z —
R(Z,X)Y'}. But it may be also regarded as a tensor of type (1,1) and
denoted by S : TM — TM,; it satisfies §'(X,Y) = ¢(SX,Y). From
the Gauss equation and (1.1}, the Ricci tensor S is given by

(1.6) S=c{@rn+1)I-3nQ®£}+hA— A%,
where h is the trace of A. Moreover, using (1.3}, we get

Ly (VXY ==3c{g($4X, V)¢ +n(Y)pAX} +(XH)AY
(1.7) + (XR)AY + (hI — AY(Vx A)Y —(Vx A)AY.

Now we quote the following in order to prove our results.

THEOREM A [1]. Let M be a real hypersurface of H,C. Then Af
has constant principal curvatures and € is principal if and only if M is
locally congruent to one of the following:

Ag. a horosphere in H,C,

A,. a geodesic hypersphere HyC or a tube over a hyperplane H,_,C,
A,. a tube over a totally geodesic HyC (1 <k < n — 2},

B. a tube over a totally real hyperbolic space H,R.

THEOREM B [4]. Let M be a real hypersurface of H,C(n > 3). If
¢ is principal and M satisfies LS = 0, then M 1s locally congruent to
type A.

2. Real hypersurfaces in M, (c) satisfying £;5 =0

We denote by M,(c) a complex space form with the metric of con-
stant holomorphic sectional curvature 4c and M a real hypersurface
in My(c),ec # 0. In this section, we suppose that the Ricci tensor S



14 Hyang Sook Kim

satisfies the condition £S5 = 0. The following discussion in the case
where ¢ > 0 is indebted to Kimura and maeda [10}:
From (1.3), for any X € T M we have

(LeS)X =[€,5X] - S[¢, X]
={VeS)X — Vsx&+ 5V
— (VeS)X — $ASX + SHAX.

Then we see that “L;S5 = 0” is equivalent to
(2.1) VeS = ¢AS — SpA.

Since g((Vs)X,Y) = g({(Vs)Y,X) for any X,Y € TM, the equation
(2.1) shows

(2.2) (pA — AP)S = S(PA — Ad).
From (1.6) it follows that
(2.3) ¢S — 5S¢ = h(pA— Ag) — (pA* — A%4).

Here we hope to calculate ||$5 — S¢||2, which is equivalent to tr(¢S —
S5¢)? because ¢S — S¢ is symmetric. From (2.3), we get

(2.4) tr(¢S — 5¢)* = hir(¢A - A¢)2(¢5 — 5¢)
—tr(¢A” — A%¢)(¢S ~ 5¢).

In general, we get

(2.5)  tr(pA— AP} ¢S — S¢) = 2rdAdS — trAp?S — trop ASe.
Taking the trace of (2.2), we find

(2.6) trg>AS — 2tr¢SPA + tréd?SA = 0.

Combining (2.5) with (2.6), we obtain

(2.7) tr(pA — Ad)($S — S¢) = 0.



A characterization of some real hypersurfaces in H,C 15

On the other hand, we find
(2.8) tr(pA? — A2$)($S — S¢) = 2rdA24S — trA2$2S — trd A2Sé.
From (2.2) it follows that
PA{(SA — A9)S — S($A — Ad)} = 0,
which implies
(2.9) trg ASAP = trp A%$S.
Then combining (2.8) with (2.9) we have
(2.10) tr(¢A? — A%$) (¢S — S¢) = 2rd?ASA — trd? SA% — trgp? A%S.

Thus substituting (2.7) and (2.10) into {2.4) and using (1.1) and (1.6),
we can see that

(2.11) (85 — S6) = —e(h —a®),

where we have put 8 = n(A%) and « = n(Af). Taking account of
(1.1}, we find

(212) [6AEL? = B — o?.
Hence from (2.11) and (2.12), we have

(45 — o) = — sel €]’

15 — S$|I? + gcuquélF 0.

Consequently, the condition “L,S = 0” implies the fact that ¢5 = Sé
and £ is principal in the case where ¢ > 0 and that ¢5 = S¢ if and only
if £ is principal in the case where ¢ < 0. Here we note that Kimura and
Maeda. {10] proved a local classification theorem for real hypersurfaces
in P,C which satisfy £¢5 = 0. Thus because of Theorem B, it is
seems to be interested to consider real hypersurfaces in H,C satisfying
L¢S = 0 under the weaker condition than one that £ is principal.
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3. Real hypersurfaces in H,,C satisfying £:5 =0

Let M be a real hypersurface in a complex hyperbolic space H,C
endowed with the Bergmann metric of constant holomorphic sectional
curvature —4. In this section, we assume that M satisfies £¢5 = 0 and
A€ 1s principal. The second assumption means

(3.1) A%E = \AE,

where A = 5(A4%¢). For simplicity we put U = V£, Then we have
U = $AE, which together with (1.1) implies

(3.2) ¢U = —AL + af

and so g(¢U,€) = 0. Thus we define ¢U by ¢U = —uW, where W is
a unit vector field orthogonal to § and g is a smooth function on Al
Namely, we have

(3.3) At = of + pW.

Here we note that this and U = p¢W give g(U, W) = 0. Moreover, it
follows from (1.6) and (3.1) that

(3.4) SE = —2(n — 1)£ + (h — \)AE,
(3.5) SU = —(2n + 1)U + hAU — A?U.

From (3.1) and (3.3) we find
(3.6) AW = v AE,
where vt = A — o. Thus (1.6) combined with (3.1) and (3.6) gives us
(3.7) SW = —2n+ )W +v(h — A AL
From (2.2), we find
(¢A — A9)SE = S($A— Ag),
which, together with (1.1), (3.4), (3.5) and the definition of U, yields
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(3.8) AU = (2h — N AU 4 (A% — Xh — 3)U.
Also, from (2.2) we get
(PA — AB)SW = 5(9A — AG)W,

which, together with (1.1), (1.6), (3.5) ~ (3.8) and the definition of W,
leads to

(3.9) {2(X = h)? = 3JAU = M(A = h)? +3(h — 22 + a)}U.

On the other hand, differentiating (3.2) covariantly in the direction of
X and making use of (1.1), (1.2) and (1.3), we obtain

GAX,U)E — $(VxA) + APAX — do(X)E — apAX,

Taking the inner product of this and £ and using {1.1) and (1.3), we
have

(3.10) g{(VxA), €) = 29(AU, X)) + da(X).

Moreover, differentiating (3.1) covariantly in the direction of X, we get
(VxA)AE + A(Vx A)E + ATpAX

= dAMX)AE + M(VxA) + MAPAX.

If we take the inner product of this and £ and make use of (3.1), (3.10)

and the fact that g((VxA),,Y) = g((VxA)Y,§) for any X, Y € TA{,
then we find

(312)  g((VxA¥,AE) = 2d0a)(X) + Ag(A, X).

From (3.11), replacing X by ¢ and taking the inner product of this
result and £, we have

(3.11)

%d(Aa)(X) + g(U, X) + 3g(A°U, X) + da( AX)
= dA(E)g( A€, X) + 27 g(AU, X) + Ada(X),
where we have used (1.5), (3.10) and (3.12).

Let My be the set of consisting of points z in M such that
(A — R)(z) = 0. On the subset My, from (3.9) it is seen that
(3.14) AU =(A—a)U on M.

Then, by using (3.14) the equation (3.8) turns out to be {a(A — a) —
3}U = 0 on M.

(3.13)
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LEMMA 3.1. Let M be a real hypersurface of H,C. Assume that
it satisfies £¢S = 0 and A€ is principal. fU # 0, then Int(M;) = 0,
where Int(Mjg) denotes the interior of My = {z € M | (A — h)(z) = 0}.

Proof. We assume that the interior of My is not empty. Since we
have supposed that U # 0, from the above equation it follows that
a{A — a) = 3. By means of (3.1), it is clear that § = Ae, which
together with (2.12) gives us ¢(U,U) = 3. Thus, using (3.8) and (3.14),
the equation (3.13) is reformed as

ad)(£)g(AE, X) = (3) — 8a)g(U, X) — 3da(X) + ada(AX).

Replacing X by U into this equation and making use of (3.14), we
obtain 3(3X — 8a) = 0, which yields 3 = 8. Thus we can see that
a=3/V5 A=8//5and u= 3.

On the other hand, since g({¢5 ~ SHU, W) = —g(SU, W) — g(SW,
#U), using (3.5), (3.7) and (3.8), we get g{(¢S — SH)U, W) = 3¢(¢U,
W), which together with (3.2) implies g((¢S — S¢)U, W) = —3V3.
Then it is clear that ||¢.S — S¢+V3I(W RU +U ®@ W)||* = 0, where we
have used (2.11) and (2.12). Thus we can see that ¢S —S5¢ = —/3(W
J+UQW). Since U = —/3W, we obtain ¢S—S¢ = ¢UQU +URPU.
Combining this with (2.3), we have

(3.15) AGA— $A? —NAp+ A2p = QU DU + U ® $U,
which, together with (3.1), (3.2) and (3.14), shows that

APAZ — A% — AAGA + A%PA
=(a— N{AQU+ U ® At} +3U ® .

Substituting X by £ into (1.7), we get

(VeS)X =3g(U, X)€ +3n(X)U + A(VeA)X
— A(VeA)X — (VeA)AX,

(3.16)

which, together with (1.6) and (2.1), leads to

MAZX — ¢AX — MNAPAX + A29AX

(3.17) =3g(U, X)E + M(VeA)X — A(VeA)X ~ (Ve A)AX.
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From (3.16) and (3.17), it is seen that

(a = A{ALQU +U @ ALY X) + 3U @ ¢(X)

(3.18) = 3g(U, X )¢ + AM(VeA)X — A(VeA)X — (Ve A)AX.

By using the Codazzi equation (1.5), the equation (3.17) is reformed
as
APA*X — pAPX — NAGAX + ATPpAX
=39(U, X)) + MVx A — XX — A(Vx A + ApX — (VL A)AX,

which together with (3.11) yields

(VxA)AE — (Ve A)AX
= ApA’X — pA*X — 39(X,U)E + A X — APX.

Transforming this by ¢ and taking account of (1.1), we get

H{(VxA)AL — (Ve A)AX )

(3.19) = APX ~ AAZX - AX 4+ My X} — pAX.

Differentiating (3.15) covariantly along M, and making use of (3.1),
we obtain

(Vxd)AA — AN + ¢(A(VxA)Y — (VxA)AY — A(VxA)Y)
~ (MVxA) —(VxA)A - A(Vx A))pY — (AAT AN Vx9)Y
={¢VxU QU +¢U @ VxU+VxU @ ¢U+U @ ¢VxU
+A—-a)g(U, X)ERU +U R EHNY).

Taking the skew symmetric part for X and Y of this and then replacing
X by £ into the obtained result, then we get

MX —n(X)E} — d(VeA)AX + $(Vx A)AL + 9A9X
~ MNVeA)pX + (VeA)AdX 4+ AV A)pX + NATX — A°X
= g(U, X)¢VeU + g(VeU, X)oU — g(VxU, E}oU
+ 9(8U, X)VeU + g(¢V U, X)U ~ (A — a)g(U, X)U,
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where we have used (1.1), (1.2), (1.5) and (3.1). Combining this and
(3.19) and taking account of the fact that g(VxU, &) = —g(Vx¢,U) =
(o — \)g(A4E, X), we get

3g(U, ¢X )€ + (A — a)g(U, ¢ X )AL
(3.20) = g(U, X)¢VeU + g(VeU, X)U + (X — a)g( A&, X )¢U
+ g(¢U, X)WV U + g(¢VeU, X)U.

On the other hand, differentiating U covariantly in the-direction of X
and making use of (1.2), (1.3) and (3.1), we get

VXU = aAX = Ag(X, A + $(Tx A + $AAX,
which implies that
VeU = oAl — dal + ¢(VA) + ¢AU.
Then, by means of (3.14), we have
dVeU = (2a — YU — (Ve AX.

Substituting the last two equations into (3.20) and taking the inner
product of this result and U, we can see that

(60 — 4\)g(U, X) = 0,

where we have used (3.14). Thus, we obtain 3(6a — 4)) = 0. Hence
3a = 2X. Since 3X = 8a on the subset M;,, we get « = 0. This
contradicts the fact that a = 3/v/5. Consequently, we conclude that
I nt(Mo) = {).

The following is immediate from Lemma 3.1.

LEMMA 3.2. Let M be a real hypersurface of H,C. If it satisfies
LS == 0 and A€ is principal such that n{ A%£) = trA, then £ is princi-
pal.
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REMARK 1. In general, “¢ is principal” implies “A¢ is principal”.
But the converse is not true.

REMARK 2. The structure vector £ is principal with respect fo S if
the Ricci tensor S satisfies 5§ = o{ for some function ¢ on M. Under
the same assumption as Lemma 3.2, we have £ is principal with respect

to S. In fact, since A = p(A%¢) = trA = h, taking account of (3.4) we
have S€ = —2(n — 1)¢.

REMARK 3. A ruled real hypersurface does not satisfy the condition
that A£ 1s principal. In fact, let M be a ruled real hypersurface in a
complex space form M,(c). Then M satisfies

Af =al+ BV(B#£0),
AV = B¢,
AX =0

for any vector X orthogonal to £ and V, where V is a unit orthogonal
to £, and a and 3 are smooth functions on M. Assume that M satisfics
the condition that A£ is principal, that is, A2 = AA£. Then using the
above properties of M, we get A%¢ = A(af + V) = (o® + B3¢ +
afV and A%¢ = MAEL) = adé + SAV. Thus comparing to these two
equations, we have & = A and # = 0. This contradicts the fact that

B #0.

From Lemma 3.2 and Theorem B we have the following.

THEOREM 3.3. Let M be a real hypersurface of H,C(n > 3). If A£
is principal such that n(A*¢) = trA and M satisfies LS = 0, then Af
is locally congruent to type A.

For a real hypersurface of H,,C satisfying the condition “£¢5 =07,
we see that ¢S = S¢ if and only if £ is principal. Thus we get the
following.

THEOREM 3.4. Let M be a real hypersurface of H,C(n > 3). If Al
satisfies L¢S = 0 and ¢S5 = S¢, then M is locally congruent to type
A
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