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A CHARACTERIZATION OF SOME
REAL HYPERSURFACES IN A

COMPLEX HYPERBOLIC SPACE

Hyang Sook Kim

0. introduction

We denote by Mn(c) a complete and simply connected complex 

n-dimensional Kahlerian manifold of constant holomorphic sectional 

curvature 4c, which is called a complex space form. Such an Mn(c) 

is bi-holomorphically isometric to a complex projective space a 

complex Euclidean space Cn or a complex hyperbolic space HnCy 

according as c〉0? c = 0 o호 c V 0.

In this paper, we consider a real hypersurface M in Mn(c). Typical 

examples of M in PnC are the six model spaces of type Ai, A2, B)C、D 

and E , and the ones of M in HnC are the four model spaces of type 

Ao, Ai, A2 and B (cf. Theorem A in §1), which are all given as orbits 

under certain Lie subgroups of the group consisting of all isometries of 

PnC or HnC. Denote by 0上・J"g、) the almost contact metric structure 

of M induced from the almost complex structure of Mn(c), and by A 

the shape operator of M. The structure vector g is said to be principal 

if = a& where a = ). Many differential geometers have studied

M from various points of view. Berndt [1] and Takagi [14] investigated 

the homogeneity of M. According to Takagi,s classification theorem 

and Berndt's one, the principal curvatures and their multiplicities of a 

homogeneous real hypersurface in Mn(c) are given. Moreover, it is very 

interesting to give a characterization of homogeneous real hypersurfaces 

of Afn(c), Let £吒 be the Lie derivative in the direction of & Then 

Okumura [13] and Montiel-Romero [12] proved the fact in RJC and 

HnG respectively that M is locally congruent to one of homogeneous 

ones of type A if and o교ly if g is an infinitesimal isometry, that is, 

C^g = 0, where type A means type or A2 in PnC and type Aq, Ai
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or A2 in HnC. Motivated by these results, Meieda-Udagawa [11] studied 

the condition = 0” and Ki-Kim-Lee [3] investigated the conditio교
= 0”. Recently, Kimura and Maeda [10] completly classified M 

in PnC satisfying C^S = 0, where S denotes the Ricci tehsor of M.

The purpose of the present paper is to investigate M of Tiich 

satisfies C^S ~ 0 under the condition that is principal.

1. Preliminaries

We begin with recalling the basic properties of real hypersurfaces 

of a complex space form. Let TV be a unit normal vector field on a 

neighborhood, of a point pin M and J the almost complex structure of 

Mn(c). For a local vector field X on a neighborhood of p, the images 

of X and N under the transformation J can be represented as

JX =(/>X + , JN = —&

where(/) defines a skew-symmetric transformation on the tangent bun

dle TM of M, while rj and g denote a 1-fbrm and a vector field 

on the neighborhood of p , respectively. Moreover, it is seen that 

g(&X) = t)(X))where g denotes the induced Riemannian metric on M. 

By the properties of the almost complex structure J, the set (知 & 吁,g) 

of tensors satisfies

(1-1) (/>2 = -I + t)0^,此=0, 770X) = 0, 7應)=1,

where I denotes the identity transformation. Accordingly, this set (奴 

& g) defines the almost contact metric structure on M. Furthermore, 

the covariant derivatives of the structure tensors are given by

(1-2) (▽x©)Y = t)(Y)AX 一 g(AX, Y)&

(1.3) ▽滅=姒 X,

where V is the Riemannian connection of g. Since the ambient space is 

of constant holomorphic sectional curvature 4c, the equations of Gauss 

and Codazzi are respectively given as follow원 :

R(X, Y)Z = c{g(匕 Z)X - g(、X, Z)Y + g@Y, Z泌X

(1-4) -心X, Z*Y - 2g@X, Y^Z}

+ g(AY, Z}AX - g(AX, Z)AY
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(VxA)y - (VyA)X
(•) = cMX^Y - rj(Y^X - 2g0X, V)0,

where R denotes the Riemannian curvature tensor of M. The Ricci 

tensor S1 of M is the tensor of type (0,2) given by S'(X： Y) = tr{Z t 

R(ZyX)Y}. But it may be also regarded as a tensor of type (1,1) and 

denoted by S : TM TM\ it satisfies S'(X, Y) = g(SX,Y\ From 

the Gauss equation and (1.1), the Ricci tensor S is given by

(1.6) S — c{(2n + 1)1 一 3??(X)£} + hA — A2,

where h is the trace of A. Moreover, using (1.3), we get

(▽xS)Y = —3c{g04X, Y)g + t](Y)</>AX} + (Xh)AY

C) + (Xh)AY + (hl - A)(VXA)F 一 (VXA)AK.

Now we quote the following in order to prove our results.

THEOREM A [1]. Let M be a real hypersurface of HnC. Then M 

has constant principal curvatures and g is principal if and only if M is 

locally congruent to one of the following:

Aq. a horosphere in ifnC,

Ai，a geodesic hypersphere HqC or a tube over a hyperplane Jfn-iC,

A2. a tube over a totally geodesic HkC (1 ~ 2),

B. a tube over a totally real hyperbolic space 77nR.

THEOREM B [4]. Let M be a real hypersurface of HnC(ri > 3). If 

g is principal and M satisGes C^S — 0, then M is locally congruent to 

type A.

2. Real hypersurfaces in Mn(c) satisfying C^S = 0

We denote by Mn(c) a complex space form with the metric of con

stant holomo호phic sectional curvature 4c and M a real hype혼su호face 

in Mn(c), c 丰 0. In. this section, we suppose that the Ricci tensor S 
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satisfies the condition 歸 S — 0. The following discussion in the case 

where c > 0 is indebted to Kimura and maeda [10]:

From (1.3), fb호 any X € TM we have

(qs)x = [&sx] —SEX]
=(▽成)X-*xf+

=(▽fS)X - ©ASX + S04X.

The꾜 we see that "&S = 0” is equivalent to

(2.1) ▽故=©AS 一

Since g((Vs)X〉Y) = $((▽$)匕X) for any XyY E TM^ the equation

(2.1) shows

(2.2) (M - A©)S = S(M 一

From (1.6) it follows that

(2.3) <bS — S<!> = h0A 一 A&) - (M2 一 再、)•

Here we hope to calculate ||©S — S^||2, which is equivalent to tr^S —

S©)2 because <j>S — S(f> is symmetric. From (2.3), we get

tr^S — S(/>)2 = htr^A — 4©)(0S — S&、)

(24) 一 切(衡 _ 4勺)(傾 一 W).

In general, we get

(2.5) 七 — A(f))((f)S — S0) = 2tr(/)A(/)S — trA(/)2S — tr(f)AS</>.

Taking the trace of (2.2), we find

(2.6) 切驴 AS 一 2tr<f>S(/)A + tr(^SA = 0.

Combining (2.5) with (2.6), we obtain

(2.7) tr(M — A(以©S 一 S» = 0.
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On the other hand, we find

(2.8) tr^A2 — A2阳S - S» = 5蜀树 一 tr^^S 一

From (2.2) it follows that

M{(M 一 — S04 _ 4')} = 0,

which implies

(2.9) tr<j)ASA(/)= (j)S.

Then combining (2.8) with (2.9) we have

(2.10) tr^A2 一疽饥0S — S(/>) = 2tr</>2ASA - trcpSA1 一 tr^^S.

Thus substituting (2.7) and (2.10) into (2.4) and using (1.1) and (1.6), 

we can see that

q
(2.11) tr(</>S - S^)2 = -~c(/3 - a2),

where we have put g = 7?(4气)and a = Taking account of

(1.1),  we find

(2.12) “4히 |2 = 疗 —@2.

Hence from (2.11) and (2.12), we have

切(SS-對)2 = -护泌曳||2

or
3

||©S — S0|F + $ 에©WflF = 0.
厶

Consequently, the condition = 0" implies the fact that ©S — S6 

and £ is principal in the case where c > 0 and that ©S = S0 if and only 

if f is principal in the case where c < 0. Here we note that Kimura and 

Maeda [10] proved a local classification theorem for real hypersurfaces 

in PnC which satisfy C^S = 0. Thus because of Theorem B, it is 

seems to be interested to consider real hypersurfaces in HnC satisfying 

= 0 under the weaker condition than one that & is principal.
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3・ Real hypersurfaces in HnC 요atisfying £^S = 0

Let M be a real hypersurface in a complex hyperbolic space HnC 

endowed with the Bergmann metric of constant holomorphic sectional 

curvature —4. In this section, we assume that M satisfies C^S = 0 and 

is principal. The second assumption means

(3.1) A2C =入 4&

where A — 허f). For simplicity we put U = N& Then we have

U = 饱4& which together with (1.1) implies

(3.2) 和=-AC +

and so g(d>U上)=0. Thus we define(j>U by ©U = where W is 

a unit vector field orthogonal to g and /z is a smooth function on M. 

Namely, we have

(3.3) M + pW.

Here we note that this and U =］泌W give g(U^ W) = 0. Moreover, it 

follows from (1.6) and (3.1) that

(3.4) S& = —2(n — 1)^ + (K — 시 4&

(3.5) SU = -(2n + 1)17 + hAU 一 A2^

From (3.1) and (3.3) we find

(3.6) AW = 7 AC,

where = 入 一q. Thus (1.6) combined with (3.1) and (3.6) gives us

(3.7) SW = -(2n + 1)W + 7(/j 一入)4&

From (2.2), we find

(§A — = S0)A — A')'

which, together with (1.1), (3.4), (3.5) and 난ic definition of U, yields
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(3.8) = (2h 一 X)AU + (A2 —)나i — 3)U.

Also, from (2.2) we get

(M 一 A(^SW = S(0厶 一

which, together with (1.1), (1.6), (3.5) ~ (3.8) and the definition of PT, 

leads to

(3.9) {2(A 一 hf 一 3}AU = {A(A - hf + 3(& — 2人 + a)}U.

On the other hand, differentiating (3.2) covariantly in the direction of

X and making use of (1.1), (1.2) and (1.3), we obtain

g(4X, U* - ©(▽ x4)f + MAX — da(X)g - gAX.

Taking the inner product of this and g and using (1.1) and (1.3), we 

have

(3.10) g((Vx4)& 0 = 2g(4U, X) + da(X\

Moreover, differentiating (3.1) covariantly in the direction of X, we get

I (VxA)AC + A(VxA)e + A2^AX

〈'’ =dX(X)AC + A(VXA)C + XA</>AX.

If we take the inner product of this and £ and make use of (3.1), (3.10) 

and the fact that g((Vxw4)& Y) = g((VxA)Y,() for any X,Y 6 T-Af, 

then we find

(3.12) ^((VxA)e, AC)=財M)(X) + Xff(AU, X).

From (3.11), replacing X by g and taking the inner product of this 

result and & we have

h(Aa)(X)+g(U,X) + 3g(A2U,X) + da(AX)

(O. ±0 J 厶

=dNQgQ頌 X) + 2Xg(AU, X) + Acfa(X),

where we have used (1.5), (3.10) and (3.12).

Let Mq be the set of consisting of points x in M such that 

(A — /i)(x) = 0. On the subset Mq, from (3.9) it is seen that

(3.14) AU = (A — a)U on Mq.
Then, by using (3.14) the equation (3.8) turns out to be {a(入 一 q)— 
3}U = 0 on Mq.
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LEMMA 3.1. Let M be a real hypersurface of HnQ. Assume that 

it satisfies £^S = 0 and is principal. IfU^O, then Int(Mo) = 0? 

where denotes the interior of Mq = {x € M | (A — A)(x) = 0).

Proof. We assume that the interior of Mq is not empty. Since we 

have supposed that。尹 0, from the above equation it follows that 

ci(入 一 q) = 3. By means of (3.1), it is clear that g = Aa, which 
together with (2.12) gives us 戒认 U) = 3. Thus, using (3.8) and (3.14), 

the equation (3.13) is reformed as

ad시g)g(A&X) = (3A — 응 CY)g(U,X) — 3da(X) + ada(AX).

Replacing X by U into this equation and making use of (3.14), we 

obtain 3(3A 一 8a) = 0, which yields 3A = 8a. Thus we can see that 
a = 3/、/云 A = 이 and “ = y/3.

On the other hand, since = -g(SU^W)-g(SW,

心 using (3.5), (3.7) and (3.8), we get g((<f>S —沖U、W) = 3g(机人 
W\ which together with (3.2) implies g((©S — S^U^W) = —3、/位 
Then it is clear that 忡 S — S(/> + y/3(W ®U + U 014^)||2 = 0, where we 

have used (2.11) and (2.12). Thus we can see that </>S — S(f)= ~\/3(W0 

(7+U®W). Since(/>U = — i存we obtain ©S—S© = ©SgD+SX泌U. 

Combining this with (2.3), we have

(3.15) M〉A -如陪 一 XA(j> + A2^ =柯区 U + U 区

which, together with (3.1), (3.2) and (3.14), shows that

z 、 AM2 - M3 - A AM + A2M
(3.16}

=(a- 人){*)""如4崎} + 31物 &

Substituting X by f into (1.7), we get

(VQ)X =3g(U,X)E + 3t)(X)U + X(V^A)X

-A(y^A)X - (▽M)4X,

which, together with (1.6) and (2.1), leads to

X^X 一 (/>A3X 一 而AX + 心AX

' =3g(U, X、)& + 入(▽“1)X - A(y^A)X - (▽")4X.
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From (3.16) and (3.17), it is seen that

(a- 시{& ^U + U® 4f}(X) + 3U® RX) 
(318) = 3时,x、)& + A(V^A)X - 4(%4)X -(▽以)4X.

By using the Codazzi equation (1.5), the equation (3.17) is reformed 

as

X^X - <"X - XA^AX + ^<j>AX

=3g(U,X父 + A(VxA)e 一 X^X — A(VxA)e + A©X — (▽/)4X,

which together with (3.11) yields

(▽x&)& -

=\<"X — - 3g(X, U)E + MX 一 A<j)X.

Transforming this by <j)and taking account of (1.1), we get

19) ©{(▽x4)，霞-(▽M)4X}
(■ ) = A3X - AA2X - AX + A7?(X)e -

Differentiating (3.15) covariantly along Mo and making use of (3.1), 

we obtain

(Vx^)(AA - A2)y + ^(A(VxA)y - (VxA)AV - A(VXA)Y)

-(A(VXA) - (VxA)A - A^xA^Y -(人厶勺①瑚丫

={WxU ® 17 + <i)u ®x【J + ▽xU ® <j)U + U ® <tVxU

+ (A- a)g(U, X)(f ®U + U® f )}(Y).

Taking the skew symmetric part for X and Y of this and then replacing

X by g into the obtained result, then we get

X{X - 7?(X)g} - ©(▽M)4X + ^>(VxA)Ae + ©A<j)X

-入(▽$£泌X + (▽")4©X + 4(业厶渺X + AA2X - A3X

=g(U,X*N々U + g(%U, X)柯-g0xU,抑J

+ g^U, X)*U + g(、啊 M X、)U -(A- a)g(U, X)U, 
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where we have used (1.1), (1.2), (1.5) and (3.1). Combining this and

(3.19) and talcing account of the fact that g(NxUf) = U)=

(« -入)gQ4£,X), we get

3g(U, + (A- a)g(U,小X)A£

(3.20) = g(U, X、gU + gEU, X^U + (A - a)g(4& X)<f>U

+ g@U, X)▽汐 + g여NR, X)U.

On the other hand, differentiating U covariantly in the° direction of X 

and making use of (1.2), (1.3) and (3.1), we get

▽xU = aAX -如+ MNxA准，+ S404X,

which implies that

WJ = aAC - XaC + + 坤・

Then, by means of (3.14), we have

妒农U = (2a - 시U — (▽"!)&

Substituting the last two equations into (3.20) and taking the inner 

product of this result and U、we can see that

(6a-4，X)g(SX) = 0,

where we have used (3.14). Thus, we obtain 3(6a 一 4人)= 0. Hence 

3a = 2A. Since 3A = 8a on the subset we get a = 0. This

contradicts the fact that a = 3/協.Consequently, we conclude that 

ini(Mo) = 0.

The following is immediate from Lemina 3.1.

LEMMA 3.2. Let M be a real hypersurface of If it satisfies 

C^S = 0 and is principal such that ?7(4흐g) = trA, then g is princi

pal.
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REMARK 1. In general, "g is principal” implies 七4£ is principal”. 

But the converse is not true.

REMARK 2. The structure vector f is principal with respect to S if 

the Ricci tensor S satisfies S& = for some function a on M. Under 

the same assumption as Lemma 3.2, we have £ is principal with respect 

to S. In fact, since A = ?7(A3^) = trA = 加 taking account of (3.4) we 

have Sg = —2(n — l)g.

REMARK 3. A ruled real hypersurface does not satisfy the condition 

that is principal. In fact, let M be a ruled real hypersurface in a 

complex space form Afn(c). Then M satisfies

馈* +阪(5),

AV =庞，

AX = Q

for any vector X orthogonal to g and V, where V is a unit orthogonal 

to & and a and (3 are smooth functions on M. Assume that M satisfies 

the condition that is principal, that is, A2^ — Then using the 

above properties of M, we get A2^ = + /3V) = (a2 + 伏)$ +
a^V and A2^ = A(A^) = a人g + (3XV. Thus comparing to these two 

equations, we have a = X and " = 0. This contradicts the fact th^t 

3纣

From Lemma 3.2 and Theorem B we have the following.

THEOREM 3.3. Let M be h real hypersurface of HnC(n > 3). If

is principal such that = trA and M satisfies C^S = 0? then AI 

is locally congruent to type 4

Fo호 a real hype호surface of HnC satisfying the condition aC^S = 011, 

we see that(j)S = S(j) if and only if g is principal. 모hus we get the 

following.

THEOREM 3.4. Let M be a real hypersurface of HnC(n > 3). If M 

satisfies £^S — 0 and(/>S = S如 then M is locally congruent to type 
4 “
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