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On the Restricted Fibred Mapping Projection in a Quasitopos
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In this paper, we introduce various exponential laws and fibrations in a quasitopos over a base. And the
properties of the restricted fibored mapping projection in a quasitopos are investigated.
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I . Preliminaries

The purpose of this section is to collect
some basic definitions and known results about
the fibrewise category and quasitopos which
we shall need in later sections.

Given an object B of a category C, the
category Cp of objects over B is defined as
follows. An object over B is a pair (X, p)
consisting of an object X of C and a
morphism p: X — B of C called the
projection ; in practice X alone is usually a
sufficient notation. If X , Y are objects over
B with ﬁrojections bp,q, then a morphism
f: X— Y of Cis a morphism over B if
qg°f = p. Composition in Cpg is defined
according to the composition in C. The
isomorphisms (= eguvalences) of the category

Cp are called ismorphisms (equivalences) over
B. Notice that B itself is regarded as an
object over B with the projection 1g. Let X
be an object over B with the projection
p: X — B. The inverse image p '(b) of
each b in B is denoted by X, and known
as the fibre over b. The category of all sets

and functions between them will be denoted
by Set In the category Setg, we can

consider a bifunctor X p. Specifically, let X,

Y be sets over B with projections p , ¢
respectively. A fibre product X X g Y is the
subset of XX Y consisting of pairs (x,¥)
such that p(x) = g¢(y) with the projection »
given by Hx,5) = px) = q(»). In fact,
X XgYis a product of X and Y in the
category Setg.
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Definition 1.1 A concrete category (C, U)
over Set is topological if every

U-—structured source in Sef has a unique
U—initial lift where, U: C — Set is the
underlying functor.

Dually,we have

Definition 1.2 A concrete category (C, U)
over Set is cotopological if every U—

structured sink in Sef has a unique U—
final lift.

Remark. If C is a concrete category, then C
is topological if and only if it is cotopological.

Definition 1.3 A concrete category C over
Set is a c-category if every constant map is
a morphism.

Definition 1.4 A topological c-category C is
a quasitopos if final eqgi-sinks in C are closed
under the formation of pullbacks.

Defintion 1.5 A concrete category C is
cartesian closed if it satisfies the follwing
conditions :

(i) C has finite products.

(i) For any object X of C, the funtor
X X : C — C has a right adjoint.

Remark. A topological category C is a
quasitopos if and only of for each object B in
C, the category Cp is cartesian closed.

II. Fibrewise Exponential Laws in a
Quasitopos

Let C be.a quasitopos. In this section, we
obtain the various exponential laws in the

category Cp. From now on, C will denote a

quasitopos otherwise specified throughout this
section.

It is known that a topological category C is
a quasitopos if and only if for each object B
in C, the category Cp is cartesian closed.

Hereafter we obtain the internal function space
structure in Cp. For objects X and Y over

B!
let homB(X, Y) = b]_EIBhom(Xb, Y.b) as

a set, where hom(X,, Y,) is the set of all
morphisms from X, to Y, Since C is
cotopological, we can endow hompg(X, Y)
with the final C-—structure with respect to
the sink {f|f: Z— homg(X,Y) set map
over B such that ev- (ly Xgf) is a
morphsm in C where Z is in Cg}. Then
homg( X, Y) is an object over B with
projection ( pg) : homz( X, Y) — B defined
by (pg)(g) = c for g hom(X,,Y.).

Also, the evaluation map

ev: X Xghomg(X,Y) - Y defined by

ev (x, f) = f(x) is a morphism over B.

Furthermore, the funtor X Xz : Cy— Cy

is a left adjoint of the functor

hom (X, ): Cg— Cp via ev.

Theorem 2.1 (The First Exponential Law)
For objects X,Y,Z over

natural isomorphsm

B, there is a

g : homB(X X B Y,Z) - homB(X, homB( Y,t’

given by (N (x)N») = f(x,v)
Proof. see [4].

For objects X, Y over B, let Homg(X,Y)

be the set of all morphisms over B from X
to Y. Give this the subspace structure of
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hom (X, Y), where hom (X, Y) is the set

of all morphisms from X to Y. Then the
evaluation map
ev: XX Homg(X,Y)— Y is a morphism in

C.

Theorem 2.2 Fér objects X and Y in Cg
, we have an isomorphism

0: Homg( X, Y)— Homg(B, hom (X, Y))
given by o(¢)(b) = ¢, where

¢: X— Y is a morphism over B and
$p: Xp = Yy

Proaf. see [4].

Theorem 2.3 (The Second Exponential Law)
For objects X,Y,Z over B, there is a
natural isomorphism

6 : Homg(X x 5 Y, Z) = Homg(X, hom g

(Y, Z)) where 0(/)(x)(y) = f(x,y).
Proof. see [4].

Remark. The above two theorems are equi-
valent under the first exponential law.

M. The Restricted Fibred Mapping
Projection.

In this section, we assume that the quasito-
pos C contains R equipped with a structure
addition
RxR to R as morphisms. Further, every

allowing and multiplication from
map f: IXI— I is a morphism if and only if
it is continuous In the usual sense where

I=10,1]

Definition 3.1

(1) A morphism p: X — B will be said to
have covering homotopy property (CHP) with
respect to a homotopy H: A X I— B if
for every morphism %4 : A — X such that

peh(a) = H(a,0) (a=sA), there is a
homotopy G: Ax I— X such that
p°G = H and G(a,0) = h(a) for al
a e A

A — X

! /G Vb

A x I — B

(2) p will be called a Hurewiez fibration if it
has CHP with respect to all homotopies
H: AXI— B.
(3) p will be called a Dold fibration if it has
CHP with respect to all homotopies
H: AxI— B such that H(a,t) = H(a,0)

forall 0 < ¢ < %

Theorem 32 Let p: X —B
be morphisms in C.

qg:Y— B

(1) If p,q are Hurewiez fibrations, then so is

homz(X, Y) — B.

(i) If p,q are Dold fibrations, then so is
hom B( X, Y) — B.
Proof. see [4].

Definition 33 Let ;7: X, > Y, be a

morphism for some b & B. We define
(hompg(X,Y): j) as the subspace of
hom 5 (X, Y) consisting of the path compo-
hom sz (X, Y) containing ;7 , and
(pa: 7): (homg(X, Y) : j) — B be the
restriction of (pg) to (homy (X, Y) : ;).

nent of

Proposition3.4 (The fibration proposition
for (pg: j))
let p: X —B , ¢q:Y — B be morphi-
p and
fibrations, then so is (pg : 7).
Proof. Consider the diagram
A— (homg(X,Y):j)— homg(X, YY)
| l
A x I — B

sms in C If g are Hurewiez
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Let a € A be fixed.

Then for any ¢ € I, there is a path from
Wa)= H(a,0) to H(a,t) (I-[0,t]
— ] — (homg(X,Y):j)), where h: A
—(homz(X,Y):j) and H:AxI-—
hom z( X, V). Hence h(a) = H(a,0),
H(a,t) € (homg X, Y): j). Next for any
beA, h(b), H(bt) e (homgX, Y):j).
Since k(a), h(b) € (homgz(X, Y):;) (path-
component), H(a,t) e (hom (X, Y): ).

Definition 35 If f: X — Y is a morphism,
then hom (X, Y: f) will denote the subs-
pace of hom(X,Y) consisting of morphisms
homotopic to f.

Proposition3.6 (The fibre proposition for
(bg: i
If p: X—> B and g: Y— B are Hure-
wiez fibrations and B is simply connected,
then the fibre of (pg:j) over b is hom
(X, Yy 1 7)
ie. (hom (X, Y) : 1),

= hom(X,, Y,: 7).
Proof. The fibre consists of at least one path-
component of the corresponding fibre of (pg)
-~ for paths in B may be lifted into
hom g( X, Y) and every pair of points in B
are the endpoints of a path (x,(B) = 0).
The image in B of a path in homz( X, Y)
that connects two points in the fibre over b is
a loop at & and this loop may be shrunk to a
point (7; (B) = (). It follows from the
fibration property for (pg) that the two
points belong to the same path-component of
the fibre of (pg) over b.

Proposition 3.7 (The section proposition for
(pa: 7))

If pX—B and g¢:Y—B are Hurewiez
fibrations and B is simply connected space,
then there is a morphism f: X — Y over
B such that

flXy=jXy,—Y, if and only if there is a
section to (pg : 7) ; in fact there is a one-
to-one corresponence between these morphisms

fi X — Yover B and the sections

g: B —=(homp(X,Y):7) to (pg:j)
defined by Ax) = g(b)(x) where p(x) = b.
Proof. f exists if and only if there is a section
h: B— homg(X,Y) to (pg) such that
h(b) =~ j. B is path-connected hence
WB) € (homg(X,Y): 7) and such maps
h correspond to sections g to (pg: j)

under the relation A(b) = g(b), b € B and
the result is proved.
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