The Journal of Natural Science,
Pai Chai University, Korea
Vol.8 No2: 9~ 11, 1996
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We apply a full multigrid scheme to computing eigenvalues of the Laplace eigenvalue problem with Dirichiet
boundary condition. We use finite difference method to get an algebraic equation and apply inverse power
method to estimating the smallest eigenvalue. Our result shows that the combined method of inverse power
method and full multigrid scheme is very effective in calculating eigenvalue of the eigenvalue problem.
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L IﬂtI'OdUCtiOIl problem, we need to solve algebraic equation

(A—o0B)y= Bx
For the computation of eigenvalues of a

self-adjoint operator, we need to solve
generalized matrix eigenvalue problems whose
matrices are usually very sparse with large
scale. The generalized matrix problem
Ax=ABx may be transformed to

for given ¢ and x. It could be solved by
direct method with some sparse technique. If
we can however consider the algebraic
equation as a disrete problem of the given
equation, we can apply the idea of multigrid
method to solving this problem whenever need.
Thus we may get an approximation to an
eigenvalue very fast comparing to the direct
method. In this paper we compute the smallest
product induced by the matrix B. If we eigenvalue of Laplace operator with Dirischlet
apply the inverse power method to this boundary condition on a square domain and

(A—0B) 'Bx= pux,

which is self-adjoint with respect to the inner
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compare the results of the mixed method with
multigrid idea to those of block tridiagonal
Gauss elimination method. It shows that the
former is very effective.

II. Eigenvalue Problems

We consider the solution of the second
order partial differential eigenvalue problem

—du= Au
in a square
Q= {(x, v):0<x<1,0<¢y<1}

with the boundary conditions #=0 on the
boundary of £2. For a given &, let

h=~21—k.

n=2%—1 and
Let
-Qh: {(xz'; y,‘)‘X,': ih,J’jzjh. Li=1,..., n}

be the interior grid points at level k. If we
apply finite differnce scheme with 5 stencils,
we get the following generalized algebraic
eigenvalue equation

Ahuh: AhBhuh

where
Trid(—1,D,—D
if rexicographic ordering
H' D,

if red —black ordering

and B"= K’ with rank of #’.

In a case of discrete problem like Ax=b,
the multigrid method may be applied if we
consider the equation Ax=54 as a disdrete
problem of a continuous equation. Thus we
can apply the idea of multigrid method in the
inverse power method to approximate the
smallest eigenvalue.

Mixed Algorithm of Inverse Power Method
with Multigrid:

+ Take an initial unit vector x, with

x0B %= 1.
+ For v=1,2, -, maxit
1. x= MGM (A", B", x|, h)
2. B,=xTB"%,_,
3. 7=\/~m
4. xu=%
5 A9 =-L

B,

Note that x= MGMI(A, B,y, %) means
solving the equation Ax= By in x using the
multigrid method.

M. Numerical Results

We use a finite difference discretization
with 5 stencils so that we get

AMut = 2* B*u",

Since we apply inverse power method to the
equation, we need to compute solutions of

Ahx: th v—1

for the given right hand side. For the solutions
of the equation, we employ both a block
tridiagonal Gauss elimination and full multigrid
scheme. For the full multigrid scheme we use
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a red-block Gauss-Seidel method. The results
are shown in Tables 1 and 2. This shows
that the mixed method produces the result as
mush as 81 times fast at level 6 and 834
times fast at level 8 It is clear that the
higher the level is, the faster it produces. The
reason is that the complexity of the multigrid
method is O(n) while that of Gauss

Elimination method is O(#°%).

Table 1. With Gauss method

level A cpu(sec.) maxit
2 18.7451 0.00 16
3 19.4868 0.00 14
4 19.6758 0.08 14
5 19.7233 121 14
6 19.7352 12.97 14
7 19.7382 176.48 14
3 19.7389 2652.62 14

Table 2. With muitigrid method

level A cpu(sec.) maxit

2 18.7451 0.00 16

3 19.4868 0.00 14

4 19.6758 0.00 14

5 19.7233 0.03 14

6 19.7352 0.16 14

7 19.7382 0.77 14

8 19.7389 3.00 14
exact 19.7392
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