Purification and Characterization of Membrane-Bound Phosphatidylinositol 4-Kinase from Mouse Brain

  • Lee, Sang-Min (Department of Biochemistry and Molecular Biology, College of Sciences, Hanyang University) ;
  • Son, Hyeog-Gin (Department of Biochemistry and Molecular Biology, College of Sciences, Hanyang University) ;
  • Lee, Young-Seek (Department of Biochemistry and Molecular Biology, College of Sciences, Hanyang University) ;
  • Lee, Kang-Suk (Laboratory of Radiation Biology, The Atomic Energy Research Institute) ;
  • Rhee, Sue-Goo (Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health) ;
  • Cho, Key-Seung (Department of Biochemistry and Molecular Biology, College of Sciences, Hanyang University)
  • Received : 1996.09.18
  • Published : 1996.11.30

Abstract

A membrane-bound phosphatidylinositol 4-kinase (PI 4-kinase) was separated in a sucrose gradient and solubilized with 1% Triton X-100 from mouse brain. The enzyme was purified 2,952-fold by various chromatographic techniques including DEAE-cellulose, PI-Sepharose and Sephacryl S-200 gel filtration. The molecular weight of PI 4-kinase was approximately 76 kDa by gel filtration and 70.8 kDa by SDS-polyacrylamide gel electrophoresis. The purified enzyme exhibited specific activity of 11.2 nmol/min/mg protein and pi value of 4.7. Kinetic analysis of the PI 4-kinase indicated apparent $K_m$, values of 190 ${\mu}M$ and 120 ${\mu}M$ for phosphatidylinositol and ATP, respectively. The maximal activity of this purified enzyme was observed at pH 7.4 at an incubation temperature of $37^{\circ}C$. The enzyme activity was significantly activated by $Mg^{2+}$, $Mn^{2+}$ and $Fe^{2+}$, and inhibited severely by $Ca^{2+}$. PI 4-kinase was proved to be pure in its immunoblot test by polyclonal antibody prepared from immunized rabbit sera. By this test, we were able to detect the existence of the same type of PI 4-kinase from other mouse organ tissues, such as liver, heart, kidney and spleen. Furthermore, similar immunoblot analysis with the same antisera recognized the different epitopes of PI 4-kinase proteins from various organs of rabbit, chinese hamster and rat.

Keywords

References

  1. Cell v.45 Bell, R.M. https://doi.org/10.1016/0092-8674(86)90774-9
  2. Annu. Rev. Biochem. v.56 Berridge, M.J. https://doi.org/10.1146/annurev.bi.56.070187.001111
  3. J. Biol. Chem. v.266 Buxeda, R.J.;Nickels, J.T. Jr.;Belunis, C.J.;Carman, G.M.
  4. Biochim. Biophys. Acta v.486 Cho, K.S.;Hong, S.D.;Cho, J.M.;Chang, C.S.;Lee, K.S. https://doi.org/10.1016/0005-2760(77)90068-6
  5. Biochim. Biophys. Acta v.318 Cho, K.S.;Proulx, P. https://doi.org/10.1016/0005-2736(73)90335-0
  6. J. Biol. Chem. v.261 Corkey, B.E.;Duszynski, J.;Rich, T.L.;Matschinsky, B.;Williamson, J.R.
  7. Biochemistry v.26 Endemann, G.;Dunn, S.N.;Cantley, L.C. https://doi.org/10.1021/bi00395a039
  8. J. Neurobiochem. v.48 Fisher, S.K.;Agranoff, B.W. https://doi.org/10.1111/j.1471-4159.1987.tb05618.x
  9. J. Biol. Chem. v.267 Flanagan, C.A.;Thorner, J.
  10. Biochem. J. v.284 Graziani, A.;Ling, L.E.;Endemann, G.;Carpenter, C.L.;Cantley, L.C. https://doi.org/10.1042/bj2840039
  11. J. Biol. Chem. v.257 Hofmann, S.L.;Majerus, P.W.
  12. J. Biol. Chem. v.257 Hofmann, S.L.;Majerus, P.W.
  13. Annu. Rev. Biochem. v.54 Hokin, L.E. https://doi.org/10.1146/annurev.bi.54.070185.001225
  14. Anal. Biochem. v.53 Holloway, P.W. https://doi.org/10.1016/0003-2697(73)90436-3
  15. Biochim. Biophys. Acta v.959 Hou, W.M.;Zhang, Z.L.;Tai, H.H. https://doi.org/10.1016/0005-2760(88)90150-6
  16. Korean Biochem. J (presently J. Biochem. Mol. Biol.) v.21 Hwang, J.T.;Lee, J.H.;Lee, Y.S.;Rhee, S.G.;Cho, K.S.
  17. J. Biol. Chem. v.265 lkebe, M.;Reardon, S.
  18. Biochim. Biophys. Acta v.1080 Jenkins, G.H.;Subrahmanyam, G.;Andersn, R.A. https://doi.org/10.1016/0167-4838(91)90105-9
  19. Eur. J. Biochem. v.168 Katan, M.;Parker, P.J. https://doi.org/10.1111/j.1432-1033.1987.tb13435.x
  20. Nature v.227 Laemni, U.K. https://doi.org/10.1038/227680a0
  21. J. Biochem. Mol. Biol. (foremerly Korean Biochem. J.) v.28 Lee, C.Y.;Hwang, J.H.;Lee, Y.S.;Cho, K.S.
  22. J. Biol. Chem. v.193 Lowry, O.H.;Rosenbrough, N.J.;Farr, A.L.;Randall, R.J.
  23. Trends Biochem. Sci. v.10 Majerus, P.W.;Wilson, D.B.;Connolly, T.M.;Bross, T.E.;Neufeld, E.J. https://doi.org/10.1016/0968-0004(85)90160-4
  24. J. Biol. Chem. v.267 Nickels, J.T. Jr.;Buxeda, R.J.;Carman, G.M.
  25. Nature v.334 Nishizuka, Y. https://doi.org/10.1038/334661a0
  26. J. Biol. Chem. v.263 Porter, F.D.;Li, Y.S.;Deuel, T.F.
  27. Proc. Natl. Acad. Sci. USA v.84 Ryu, S.H.;Suh, P.G.;Cho, K.S.;Lee, K.Y.;Rhee, S.G. https://doi.org/10.1073/pnas.84.19.6649
  28. Biochem. J. v.241 Saltiel, A.R.;Fox, J.A.;Sherline, P.;Sahyoun, N.;Cuatrecasas, P. https://doi.org/10.1042/bj2410759
  29. Proc. Natl. Acad. Sci. USA v.76 Towbin, H.;Staehelin, T.;Gordon, J. https://doi.org/10.1073/pnas.76.9.4350
  30. Biochem. J. v.233 Van Dongen, C.J.;Zwiers, H.;Gispen, W.H.
  31. Eur. J. Biochem. v.200 Wetzker, R.;Klinger, R.;Hsuan, J.;Fry, M.J.;Kauffmann-Zeh, A.;Milller, E.;Frunder, H.;Waterfield, M. https://doi.org/10.1111/j.1432-1033.1991.tb21065.x
  32. J. Biol. Chem. v.259 Wilson, D.B.;Bross, T.E.;Hofmann, S.L.;Majerus, P.W.
  33. Anal. Biochem. v.118 Wray, W.;Boulikas, T.;Wray, V.P.;Hancock, R. https://doi.org/10.1016/0003-2697(81)90179-2
  34. J. Biol. Chem. v.263 Yamakawa, A.;Takenawa, T.